The eigenvalues and eigenvectors of tridiagonal Toeplitz matrices are known in closed form. This property is in the first part of the paper used to investigate the sensitivity of the spectrum. Explicit expressions for the structured distance to the closest normal matrix, the departure from normality, and the E-pseudospectrum are derived. The second part of the paper discusses applications of the theory to inverse eigenvalue problems, the construction of Chebyshev polynomial-based Krylov subspace bases, and Tikhonov regularization. Copyright (c) 2012 John Wiley & Sons, Ltd.

Tridiagonal Toeplitz matrices: Properties and novel applications / Noschese, Silvia; Pasquini, Lionello; Lothar, Reichel. - In: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS. - ISSN 1070-5325. - STAMPA. - 20:2(2013), pp. 302-326. [10.1002/nla.1811]

Tridiagonal Toeplitz matrices: Properties and novel applications

NOSCHESE, Silvia;PASQUINI, Lionello;
2013

Abstract

The eigenvalues and eigenvectors of tridiagonal Toeplitz matrices are known in closed form. This property is in the first part of the paper used to investigate the sensitivity of the spectrum. Explicit expressions for the structured distance to the closest normal matrix, the departure from normality, and the E-pseudospectrum are derived. The second part of the paper discusses applications of the theory to inverse eigenvalue problems, the construction of Chebyshev polynomial-based Krylov subspace bases, and Tikhonov regularization. Copyright (c) 2012 John Wiley & Sons, Ltd.
2013
matrix nearness problem; toeplitz matrix; krylov subspace bases; conditioning; eigenvalues; inverse eigenvalue problem; tikhonov regularization; distance to normality
01 Pubblicazione su rivista::01a Articolo in rivista
Tridiagonal Toeplitz matrices: Properties and novel applications / Noschese, Silvia; Pasquini, Lionello; Lothar, Reichel. - In: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS. - ISSN 1070-5325. - STAMPA. - 20:2(2013), pp. 302-326. [10.1002/nla.1811]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/490879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 157
  • ???jsp.display-item.citation.isi??? 153
social impact