Modes of accretion in orogenic wedges are strongly controlled by mass balance and the efficiency of basal detachment. Sandbox models of accretionary wedges have demonstrated that fault systems grow episodically via cycles of alternating wedge thickening and lengthening. Generally, a new thrust plane generates within the footwall of the previous one, following a piggy-back mode of accretion, whereas redistribution of the mass balance in the wedge is associated to underthrusting and the reactivation of previous thrusts. We present the results of five sandbox experiments that model the interaction between tectonic sedimentation in foredeep area and erosion in the axial zone, in order to analyze the influence accretion, of these events on the cyclical behavior of a growing wedge. Modifications of the initial setup were made to analyze the effect on wedge development of syntectonic denudation, syntectonic sedimentation and coeval sedimentation and erosion, which markedly altered mass transfer within the wedge. In particular, lowering the surface slope by syntectonic erosion triggered synchronous accretion and underthrusting modes: by contrast, a sudden syntectonic sediment load in the prowedge region promoted prolonged phases of underthrusting, retarding the accretion of new imbricates at the prowedge toe, whether wedge volume was increased or not. The high length/thickness ratio of the model (120 cm/2.5 cm) allowed us to monitor a complete cycle of recovery of the system after each episode of sedimentation and/or erosion, observing how the wedge reacted to modification both altering its own cyclicity and progressively recovering it. (C) 2009 Elsevier Ltd. All rights reserved.

Load and unload as interference factors on cyclical behavior and kinematics of Coulomb wedges: Insights from sandbox experiments / Bigi, Sabina; L., Di Paolo; L., Vadacca; G., Gambardella. - In: JOURNAL OF STRUCTURAL GEOLOGY. - ISSN 0191-8141. - STAMPA. - 32:1(2010), pp. 28-44. [10.1016/j.jsg.2009.06.018]

Load and unload as interference factors on cyclical behavior and kinematics of Coulomb wedges: Insights from sandbox experiments

BIGI, Sabina;
2010

Abstract

Modes of accretion in orogenic wedges are strongly controlled by mass balance and the efficiency of basal detachment. Sandbox models of accretionary wedges have demonstrated that fault systems grow episodically via cycles of alternating wedge thickening and lengthening. Generally, a new thrust plane generates within the footwall of the previous one, following a piggy-back mode of accretion, whereas redistribution of the mass balance in the wedge is associated to underthrusting and the reactivation of previous thrusts. We present the results of five sandbox experiments that model the interaction between tectonic sedimentation in foredeep area and erosion in the axial zone, in order to analyze the influence accretion, of these events on the cyclical behavior of a growing wedge. Modifications of the initial setup were made to analyze the effect on wedge development of syntectonic denudation, syntectonic sedimentation and coeval sedimentation and erosion, which markedly altered mass transfer within the wedge. In particular, lowering the surface slope by syntectonic erosion triggered synchronous accretion and underthrusting modes: by contrast, a sudden syntectonic sediment load in the prowedge region promoted prolonged phases of underthrusting, retarding the accretion of new imbricates at the prowedge toe, whether wedge volume was increased or not. The high length/thickness ratio of the model (120 cm/2.5 cm) allowed us to monitor a complete cycle of recovery of the system after each episode of sedimentation and/or erosion, observing how the wedge reacted to modification both altering its own cyclicity and progressively recovering it. (C) 2009 Elsevier Ltd. All rights reserved.
2010
accretion mode; analogue model; critical taper; erosion; sedimentation
01 Pubblicazione su rivista::01a Articolo in rivista
Load and unload as interference factors on cyclical behavior and kinematics of Coulomb wedges: Insights from sandbox experiments / Bigi, Sabina; L., Di Paolo; L., Vadacca; G., Gambardella. - In: JOURNAL OF STRUCTURAL GEOLOGY. - ISSN 0191-8141. - STAMPA. - 32:1(2010), pp. 28-44. [10.1016/j.jsg.2009.06.018]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/48976
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 32
social impact