Social networks are an interesting class of graphs likely to become of increasing importance in the future, not only theoretically, but also for its probable applications to ad hoc and mobile networking. Rumor spreading is one of the basic mechanisms for information dissemination in networks; its relevance stemming from its simplicity of implementation and effectiveness. In this paper, we study the performance of rumor spreading in the classic preferential attachment model of Bollobs et al. which is considered to be a valuable model for social networks. We prove that, in these networks: (a) The standard PUSHPULL strategy delivers the message to all nodes within O(log2n) rounds with high probability; (b) by themselves, PUSH and PULL require polynomially many rounds. (These results are under the assumption that m, the number of new links added with each new node is at least 2. If m=1 the graph is disconnected with high probability, so no rumor spreading strategy can work.) Our analysis is based on a careful study of some new properties of preferential attachment graphs which could be of independent interest. © 2010 Elsevier B.V. All rights reserved.

Rumor spreading in social networks / Chierichetti, Flavio; Lattanzi, Silvio; Panconesi, Alessandro. - In: THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - STAMPA. - 412:24(2011), pp. 2602-2610. [10.1016/j.tcs.2010.11.001]

Rumor spreading in social networks

CHIERICHETTI, FLAVIO;LATTANZI, SILVIO;PANCONESI, Alessandro
2011

Abstract

Social networks are an interesting class of graphs likely to become of increasing importance in the future, not only theoretically, but also for its probable applications to ad hoc and mobile networking. Rumor spreading is one of the basic mechanisms for information dissemination in networks; its relevance stemming from its simplicity of implementation and effectiveness. In this paper, we study the performance of rumor spreading in the classic preferential attachment model of Bollobs et al. which is considered to be a valuable model for social networks. We prove that, in these networks: (a) The standard PUSHPULL strategy delivers the message to all nodes within O(log2n) rounds with high probability; (b) by themselves, PUSH and PULL require polynomially many rounds. (These results are under the assumption that m, the number of new links added with each new node is at least 2. If m=1 the graph is disconnected with high probability, so no rumor spreading strategy can work.) Our analysis is based on a careful study of some new properties of preferential attachment graphs which could be of independent interest. © 2010 Elsevier B.V. All rights reserved.
2011
preferential attachment; rumour spreading
01 Pubblicazione su rivista::01a Articolo in rivista
Rumor spreading in social networks / Chierichetti, Flavio; Lattanzi, Silvio; Panconesi, Alessandro. - In: THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - STAMPA. - 412:24(2011), pp. 2602-2610. [10.1016/j.tcs.2010.11.001]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/488578
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 75
social impact