Let Omega be a bounded convex open subset of R-N, N greater than or equal to 2, and let J be the integral functional J(u) = integral(Omega)[f(\Du(x)\) - u(x)]dx, where f:[0, +infinity[ --> R boolean OR {+infinity} is a lower semicontinuous function (possibly nonconvex and with linear growth). We prove that the functional J admits a unique minimizer in the space of W-0(1,1)(Omega) functions that depend only on the distance from the boundary of Omega, provided that the ratio between the Lebesgue measure of Omega and the (N -1)-dimensional Hausdorff measure of partial derivativeOmega is strictly less than a constant related to the growth of f at infinity.

Variational problems for a class of functionals on convex domains / Crasta, Graziano. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 178:2(2002), pp. 608-629. [10.1006/jdeq.2000.4011]

Variational problems for a class of functionals on convex domains

CRASTA, Graziano
2002

Abstract

Let Omega be a bounded convex open subset of R-N, N greater than or equal to 2, and let J be the integral functional J(u) = integral(Omega)[f(\Du(x)\) - u(x)]dx, where f:[0, +infinity[ --> R boolean OR {+infinity} is a lower semicontinuous function (possibly nonconvex and with linear growth). We prove that the functional J admits a unique minimizer in the space of W-0(1,1)(Omega) functions that depend only on the distance from the boundary of Omega, provided that the ratio between the Lebesgue measure of Omega and the (N -1)-dimensional Hausdorff measure of partial derivativeOmega is strictly less than a constant related to the growth of f at infinity.
2002
calculus of variations; existence; necessary conditions; noncoercive problems; nonconvex problems; uniqueness
01 Pubblicazione su rivista::01a Articolo in rivista
Variational problems for a class of functionals on convex domains / Crasta, Graziano. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 178:2(2002), pp. 608-629. [10.1006/jdeq.2000.4011]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/48743
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact