In this work, we consider sign changing solutions to the critical elliptic problem Delta u + vertical bar u vertical bar 4/N-2 u = 0 in Omega(epsilon) and u = 0 on partial derivative Omega(epsilon), where Omega(epsilon) := Omega - (boolean OR(m)(i=1) (a(i) + epsilon Omega(i))) for small parameter epsilon > 0 is a perforated domain, Omega and Omega(i) with 0 is an element of Omega(i) (for all(i) = 1; ... ; m) are bounded regular general domains without symmetry in R-N and a(i) are points in Omega for all i = 1, ... , m. As epsilon goes to zero, we construct by gluing method solutions with multiple blow up at each point a(i) for all i - 1, ... , m

A refined result on sign changing solutions for a critical elliptic problem / Y. X., Ge; M., Musso; Pistoia, Angela; Daniel, Pollack. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - STAMPA. - 12:1(2013), pp. 125-155. [10.3934/cpaa.2013.12.125]

A refined result on sign changing solutions for a critical elliptic problem

PISTOIA, Angela;
2013

Abstract

In this work, we consider sign changing solutions to the critical elliptic problem Delta u + vertical bar u vertical bar 4/N-2 u = 0 in Omega(epsilon) and u = 0 on partial derivative Omega(epsilon), where Omega(epsilon) := Omega - (boolean OR(m)(i=1) (a(i) + epsilon Omega(i))) for small parameter epsilon > 0 is a perforated domain, Omega and Omega(i) with 0 is an element of Omega(i) (for all(i) = 1; ... ; m) are bounded regular general domains without symmetry in R-N and a(i) are points in Omega for all i = 1, ... , m. As epsilon goes to zero, we construct by gluing method solutions with multiple blow up at each point a(i) for all i - 1, ... , m
2013
green function; multiple blow up; critical elliptic problem
01 Pubblicazione su rivista::01a Articolo in rivista
A refined result on sign changing solutions for a critical elliptic problem / Y. X., Ge; M., Musso; Pistoia, Angela; Daniel, Pollack. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - STAMPA. - 12:1(2013), pp. 125-155. [10.3934/cpaa.2013.12.125]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/486576
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact