Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)(3), the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 mu M and from 4 to 64 mu M, respectively. Ga(NO3)(3) delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)(3) activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)(3) also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of >= 75%. At therapeutic concentrations for humans (28 mu M plasma levels), Ga(NO3)(3) inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by >= 90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO3)(3) also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii.

In Vitro and In Vivo Antimicrobial Activities of Gallium Nitrate against Multidrug-Resistant Acinetobacter baumannii / L. C. S., Antunes; Imperi, Francesco; F., Minandri; P., Visca. - In: ANTIMICROBIAL AGENTS AND CHEMOTHERAPY. - ISSN 0066-4804. - STAMPA. - 56:11(2012), pp. 5961-5970. [10.1128/aac.01519-12]

In Vitro and In Vivo Antimicrobial Activities of Gallium Nitrate against Multidrug-Resistant Acinetobacter baumannii

IMPERI, FRANCESCO;
2012

Abstract

Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)(3), the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 mu M and from 4 to 64 mu M, respectively. Ga(NO3)(3) delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)(3) activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)(3) also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of >= 75%. At therapeutic concentrations for humans (28 mu M plasma levels), Ga(NO3)(3) inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by >= 90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO3)(3) also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii.
2012
01 Pubblicazione su rivista::01a Articolo in rivista
In Vitro and In Vivo Antimicrobial Activities of Gallium Nitrate against Multidrug-Resistant Acinetobacter baumannii / L. C. S., Antunes; Imperi, Francesco; F., Minandri; P., Visca. - In: ANTIMICROBIAL AGENTS AND CHEMOTHERAPY. - ISSN 0066-4804. - STAMPA. - 56:11(2012), pp. 5961-5970. [10.1128/aac.01519-12]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/485953
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 52
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 125
social impact