Let L be a Lie pseudoalgebra, a is an element of L. We show that, if a generates a (finite) solvable subalgebra S = < a > subset of L, then one may find a lifting (a) over bar is an element of S of [a] is an element of S/S' such that <(a) over bar > is nilpotent. We then apply this result towards vertex algebras: we show that every finite vertex algebra V admits a decomposition into a semi-direct product V = U x N, where U is a subalgebra of V whose underlying Lie conformal algebra U-Lie is a nilpotent self-normalizing subalgebra of V-Lie, and N = V-[infinity] is a canonically determined ideal contained in the nilradical Nil V.
A root space decomposition for finite vertex algebras / D'Andrea, Alessandro; Giuseppe, Marchei. - In: DOCUMENTA MATHEMATICA. - ISSN 1431-0643. - STAMPA. - 17:(2012), pp. 783-805.
A root space decomposition for finite vertex algebras
D'ANDREA, Alessandro
;
2012
Abstract
Let L be a Lie pseudoalgebra, a is an element of L. We show that, if a generates a (finite) solvable subalgebra S = < a > subset of L, then one may find a lifting (a) over bar is an element of S of [a] is an element of S/S' such that <(a) over bar > is nilpotent. We then apply this result towards vertex algebras: we show that every finite vertex algebra V admits a decomposition into a semi-direct product V = U x N, where U is a subalgebra of V whose underlying Lie conformal algebra U-Lie is a nilpotent self-normalizing subalgebra of V-Lie, and N = V-[infinity] is a canonically determined ideal contained in the nilradical Nil V.File | Dimensione | Formato | |
---|---|---|---|
DAndrea_Root-space_2012.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
215.74 kB
Formato
Adobe PDF
|
215.74 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.