Let L be a Lie pseudoalgebra, a is an element of L. We show that, if a generates a (finite) solvable subalgebra S = < a > subset of L, then one may find a lifting (a) over bar is an element of S of [a] is an element of S/S' such that <(a) over bar > is nilpotent. We then apply this result towards vertex algebras: we show that every finite vertex algebra V admits a decomposition into a semi-direct product V = U x N, where U is a subalgebra of V whose underlying Lie conformal algebra U-Lie is a nilpotent self-normalizing subalgebra of V-Lie, and N = V-[infinity] is a canonically determined ideal contained in the nilradical Nil V.

A root space decomposition for finite vertex algebras / D'Andrea, Alessandro; Giuseppe, Marchei. - In: DOCUMENTA MATHEMATICA. - ISSN 1431-0643. - STAMPA. - 17:(2012), pp. 783-805.

A root space decomposition for finite vertex algebras

D'ANDREA, Alessandro
;
2012

Abstract

Let L be a Lie pseudoalgebra, a is an element of L. We show that, if a generates a (finite) solvable subalgebra S = < a > subset of L, then one may find a lifting (a) over bar is an element of S of [a] is an element of S/S' such that <(a) over bar > is nilpotent. We then apply this result towards vertex algebras: we show that every finite vertex algebra V admits a decomposition into a semi-direct product V = U x N, where U is a subalgebra of V whose underlying Lie conformal algebra U-Lie is a nilpotent self-normalizing subalgebra of V-Lie, and N = V-[infinity] is a canonically determined ideal contained in the nilradical Nil V.
2012
lie pseudoalgebra; pseudoalgebra; vertex algebra; vertex algebras
01 Pubblicazione su rivista::01a Articolo in rivista
A root space decomposition for finite vertex algebras / D'Andrea, Alessandro; Giuseppe, Marchei. - In: DOCUMENTA MATHEMATICA. - ISSN 1431-0643. - STAMPA. - 17:(2012), pp. 783-805.
File allegati a questo prodotto
File Dimensione Formato  
DAndrea_Root-space_2012.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 215.74 kB
Formato Adobe PDF
215.74 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/485026
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact