Rosuvastatin increased vascular endothelial NO and attenuated platelet activation after ischemia-reperfusion in mice; nevertheless, the influence of rosuvastatin on the activation of human platelets and the underlying mechanism has never been investigated. In an in vitro study platelets from 8 healthy donors were incubated with scalar concentrations of rosuvastatin (1-10 mu M) before activation. Platelet recruitment (PR), that mimics the propagation of platelet aggregation and is dependent upon isoprostane formation, was investigated. PR was inhibited by rosuvastatin in concentration-dependent manner concomitantly with down-regulation of platelet release of the pro-thrombotic molecule CD40L. This effect was associated with lower production of platelet reactive oxygen species (ROS), isoprostane and activation of the glycoprotein IIb/IIIa and was counteracted by exogenous addition of isoprostanes. Conversely, rosuvastatin concentration-dependently increased platelet NO. Platelet isoprostane formation mainly depends from NADPH oxidase. Rosuvastatin concentration-dependently inhibited platelet sNOX2-dp release, a specific marker of NADPH oxidase activation, PKC phosphorylation and p47(Phox) translocation from cytosol to membranes. In an ex vivo study 10 hypercolesterolemic patients were randomly allocated to diet or rosuvastatin (20 mg). We observed that as early as 2 h after rosuvastatin PR, platelet isoprostanes formation, platelet CD40L and sNOX2-dp decreased while platelet NO increased; no changes were detected in diet-assigned patients. This study shows that in vitro rosuvastatin impairs platelet activation via inhibition of NOX2-derived oxidative stress. This effect, which is associated ex vivo with acute inhibition of platelet activation, suggests that rosuvastatin behaves as an antiplatelet drug. (C) 2012 Elsevier Inc. All rights reserved.

Rosuvastatin reduces platelet recruitment by inhibiting NADPH oxidase activation / Pignatelli, Pasquale; Carnevale, Roberto; Serena Di, Santo; Nocella, Cristina; Tommasa, Vicario; Loffredo, Lorenzo; Angelico, Francesco; Violi, Francesco. - In: BIOCHEMICAL PHARMACOLOGY. - ISSN 0006-2952. - STAMPA. - 84:12(2012), pp. 1635-1642. [10.1016/j.bcp.2012.09.011]

Rosuvastatin reduces platelet recruitment by inhibiting NADPH oxidase activation

PIGNATELLI, Pasquale;CARNEVALE, Roberto;NOCELLA, CRISTINA;LOFFREDO, Lorenzo;ANGELICO, Francesco;VIOLI, Francesco
2012

Abstract

Rosuvastatin increased vascular endothelial NO and attenuated platelet activation after ischemia-reperfusion in mice; nevertheless, the influence of rosuvastatin on the activation of human platelets and the underlying mechanism has never been investigated. In an in vitro study platelets from 8 healthy donors were incubated with scalar concentrations of rosuvastatin (1-10 mu M) before activation. Platelet recruitment (PR), that mimics the propagation of platelet aggregation and is dependent upon isoprostane formation, was investigated. PR was inhibited by rosuvastatin in concentration-dependent manner concomitantly with down-regulation of platelet release of the pro-thrombotic molecule CD40L. This effect was associated with lower production of platelet reactive oxygen species (ROS), isoprostane and activation of the glycoprotein IIb/IIIa and was counteracted by exogenous addition of isoprostanes. Conversely, rosuvastatin concentration-dependently increased platelet NO. Platelet isoprostane formation mainly depends from NADPH oxidase. Rosuvastatin concentration-dependently inhibited platelet sNOX2-dp release, a specific marker of NADPH oxidase activation, PKC phosphorylation and p47(Phox) translocation from cytosol to membranes. In an ex vivo study 10 hypercolesterolemic patients were randomly allocated to diet or rosuvastatin (20 mg). We observed that as early as 2 h after rosuvastatin PR, platelet isoprostanes formation, platelet CD40L and sNOX2-dp decreased while platelet NO increased; no changes were detected in diet-assigned patients. This study shows that in vitro rosuvastatin impairs platelet activation via inhibition of NOX2-derived oxidative stress. This effect, which is associated ex vivo with acute inhibition of platelet activation, suggests that rosuvastatin behaves as an antiplatelet drug. (C) 2012 Elsevier Inc. All rights reserved.
2012
nadph oxidase; oxidative stress; platelet function; platelets; rosuvastatin; statins
01 Pubblicazione su rivista::01a Articolo in rivista
Rosuvastatin reduces platelet recruitment by inhibiting NADPH oxidase activation / Pignatelli, Pasquale; Carnevale, Roberto; Serena Di, Santo; Nocella, Cristina; Tommasa, Vicario; Loffredo, Lorenzo; Angelico, Francesco; Violi, Francesco. - In: BIOCHEMICAL PHARMACOLOGY. - ISSN 0006-2952. - STAMPA. - 84:12(2012), pp. 1635-1642. [10.1016/j.bcp.2012.09.011]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/483951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
social impact