Voltage-dependent magnesium block of N-methyl-D-aspartate-activated channels, and the N-methyl-D-aspartate component of excitatory synaptic currents were studied in CA3 pyramidal neurons of hippocampal slices from immature (postnatal day 3-8) and adult (postnatal day 25-60) rats. In all neurons studied the kinetics of single-channel openings in cell-attached and inside-out configurations was strongly modulated by extracellular Mg2+, in a voltage-dependent manner. No age-dependent difference in the Mg2+ sensitivity of N-methyl-D-aspartate channels was observed. At physiological concentrations of external Mg2+ (1.3 mM), N-methyl-D-aspartate components of excitatory synaptic currents measured from immature and adult rats displayed a similar voltage-dependence. In immature neurons (postnatal day 3-6), the N-methyl-D-aspartate component of excitatory postsynaptic currents decay time-course was a single-exponential with an average time-constant of about 300 ms. In neurons from older animals the decay was described by a double-exponential function with both a fast component (tau f, 54-130 ms) and a slow component (tau s, 275-400 ms). With age, the contribution of the fast component increased and the decay time-course of the N-methyl-D-aspartate component of excitatory postsynaptic currents accelerated. It is concluded that the Mg2+ block of N-methyl-D-aspartate channels in CA3 pyramidal neurons does not change with development, but the kinetic properties of N-methyl-D-aspartate receptor channels are developmentally regulated.

Kinetics and Mg2+ Block Of N-methyl-d-aspartate Receptor Channels During Postnatal Development Of Hippocampal CA3 Pyramidal Neurons / R., Khazipov; Ragozzino, Davide Antonio; P., Bregestovski. - In: NEUROSCIENCE. - ISSN 0306-4522. - 69(4):(1995), pp. 1057-1065. [10.1016/0306-4522(95)00337-I]

Kinetics and Mg2+ Block Of N-methyl-d-aspartate Receptor Channels During Postnatal Development Of Hippocampal CA3 Pyramidal Neurons

RAGOZZINO, Davide Antonio;
1995

Abstract

Voltage-dependent magnesium block of N-methyl-D-aspartate-activated channels, and the N-methyl-D-aspartate component of excitatory synaptic currents were studied in CA3 pyramidal neurons of hippocampal slices from immature (postnatal day 3-8) and adult (postnatal day 25-60) rats. In all neurons studied the kinetics of single-channel openings in cell-attached and inside-out configurations was strongly modulated by extracellular Mg2+, in a voltage-dependent manner. No age-dependent difference in the Mg2+ sensitivity of N-methyl-D-aspartate channels was observed. At physiological concentrations of external Mg2+ (1.3 mM), N-methyl-D-aspartate components of excitatory synaptic currents measured from immature and adult rats displayed a similar voltage-dependence. In immature neurons (postnatal day 3-6), the N-methyl-D-aspartate component of excitatory postsynaptic currents decay time-course was a single-exponential with an average time-constant of about 300 ms. In neurons from older animals the decay was described by a double-exponential function with both a fast component (tau f, 54-130 ms) and a slow component (tau s, 275-400 ms). With age, the contribution of the fast component increased and the decay time-course of the N-methyl-D-aspartate component of excitatory postsynaptic currents accelerated. It is concluded that the Mg2+ block of N-methyl-D-aspartate channels in CA3 pyramidal neurons does not change with development, but the kinetic properties of N-methyl-D-aspartate receptor channels are developmentally regulated.
1995
01 Pubblicazione su rivista::01a Articolo in rivista
Kinetics and Mg2+ Block Of N-methyl-d-aspartate Receptor Channels During Postnatal Development Of Hippocampal CA3 Pyramidal Neurons / R., Khazipov; Ragozzino, Davide Antonio; P., Bregestovski. - In: NEUROSCIENCE. - ISSN 0306-4522. - 69(4):(1995), pp. 1057-1065. [10.1016/0306-4522(95)00337-I]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/48290
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 53
social impact