The conserved oligomeric Golgi (COG) complex plays essential roles in Golgi function, vesicle trafficking and glycosylation. Deletions in the human COG7 gene are associated with a rare multisystemic congenital disorder of glycosylation that causes mortality within the first year of life. In this paper, we characterise the Drosophila orthologue of COG7 (Cog7). Loss-of-function Cog7 mutants are viable but male sterile. The Cog7 gene product is enriched in the Golgi stacks and in Golgi-derived structures throughout spermatogenesis. Mutations in the Cog7 gene disrupt Golgi architecture and reduce the number of Golgi stacks in primary spermatocytes. During spermiogenesis, loss of the Cog7 protein impairs the assembly of the Golgi-derived acroblast in spermatids and affects axoneme architecture. Similar to the Cog5 homologue, four way stop (Fws), Cog7 enables furrow ingression during cytokinesis. We show that the recruitment of the small GTPase Rab11 and the phosphatidylinositol transfer protein Giotto (Gio) to the cleavage site requires a functioning wild-type Cog7 gene. In addition, Gio coimmunoprecipitates with Cog7 and with Rab11 in the testes. Our results altogether implicate Cog7 as an upstream component in a gio-Rab11 pathway controlling membrane addition during cytokinesis.
Mutations in Cog7 affect Golgi structure, meiotic cytokinesis and sperm development during Drosophila spermatogenesis / Belloni, Giorgio; Sechi, Stefano; M. G., Riparbelli; M. T., Fuller; G., Callaini; M. G., Giansanti. - In: JOURNAL OF CELL SCIENCE. - ISSN 0021-9533. - ELETTRONICO. - 125:22(2012), pp. 5441-5452. [10.1242/jcs.108878]
Mutations in Cog7 affect Golgi structure, meiotic cytokinesis and sperm development during Drosophila spermatogenesis
BELLONI, Giorgio;SECHI, STEFANO;
2012
Abstract
The conserved oligomeric Golgi (COG) complex plays essential roles in Golgi function, vesicle trafficking and glycosylation. Deletions in the human COG7 gene are associated with a rare multisystemic congenital disorder of glycosylation that causes mortality within the first year of life. In this paper, we characterise the Drosophila orthologue of COG7 (Cog7). Loss-of-function Cog7 mutants are viable but male sterile. The Cog7 gene product is enriched in the Golgi stacks and in Golgi-derived structures throughout spermatogenesis. Mutations in the Cog7 gene disrupt Golgi architecture and reduce the number of Golgi stacks in primary spermatocytes. During spermiogenesis, loss of the Cog7 protein impairs the assembly of the Golgi-derived acroblast in spermatids and affects axoneme architecture. Similar to the Cog5 homologue, four way stop (Fws), Cog7 enables furrow ingression during cytokinesis. We show that the recruitment of the small GTPase Rab11 and the phosphatidylinositol transfer protein Giotto (Gio) to the cleavage site requires a functioning wild-type Cog7 gene. In addition, Gio coimmunoprecipitates with Cog7 and with Rab11 in the testes. Our results altogether implicate Cog7 as an upstream component in a gio-Rab11 pathway controlling membrane addition during cytokinesis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.