The design of large space structures (LSS) requires the use of design and analysis tools that include different disciplines. For such a kind of spacecrafts it is in fact mandatory that mechanical design and guidance navigation and control (GNC) design are developed within a common framework. One of the key-points in the development of LSS is related to the dynamic phenomena. These phenomena usually lead to two different interpretations. The former one is related to the overall motion of the spacecraft, i.e., the motion of the centre of gravity and motion around the centre of gravity. The latter one is related to the local motion of the elastic elements that leads to oscillations. These oscillations have in turn a disturbing effect on the motion of the spacecraft. From an engineering perspective, the structural model of flexible spacecrafts is generally obtained via FEM involving thousands of degrees of freedom (DOFs). Many of them are not significant from the attitude control point of view. One of the procedures to reduce the structural DOFs is tied to the modal decomposition technique. In the present paper a technique to develop a control-oriented structural model will be proposed. Starting from a detailed FE model of the spacecraft and using a special modal condensation approach, a continuous model is defined. With this transformation the number of DOFs necessary to study the coupled elastic/rigid dynamic is reduced. The final dynamic model will be suitable for the control design implementation. In order to properly design a satellite controller, it is important to recall that the characteristic parameters of the satellite are uncertain. The effect that uncertainties have on control performance must be investigated. A possible solution is that, after the attitude controller is designed on the nominal model, a Verification and Validation (V&V) process is performed to guarantee a correct functionality under a large number of scenarios. The V&V process can be very lengthy and expensive: difficulty and cost do increase because of the overall system dimension that depends on the number of uncertainties. Uncertain parameters have to be parametrically investigated to determine robust performance of the control laws via gridding approaches. In particular in this paper we propose to consider two methods: (i) a conventional Monte Carlo analysis, and (ii) a worst-case analysis, i.e., an optimization process to find an estimation of the true worst-case behaviour. Both techniques allow to verify that the design is robust enough to meet the system performance specification in case of uncertainties. (C) 2012 Elsevier Ltd. All rights reserved.

Control-oriented modelization of a satellite with large flexible appendages and use of worst-case analysis to verify robustness to model uncertainties of attitude control / Gasbarri, Paolo; Monti, Riccardo; Giovanni, Campolo; Toglia, Chiara. - In: ACTA ASTRONAUTICA. - ISSN 0094-5765. - STAMPA. - 81:1(2012), pp. 214-226. [10.1016/j.actaastro.2012.07.016]

Control-oriented modelization of a satellite with large flexible appendages and use of worst-case analysis to verify robustness to model uncertainties of attitude control

GASBARRI, Paolo;MONTI, RICCARDO;TOGLIA, CHIARA
2012

Abstract

The design of large space structures (LSS) requires the use of design and analysis tools that include different disciplines. For such a kind of spacecrafts it is in fact mandatory that mechanical design and guidance navigation and control (GNC) design are developed within a common framework. One of the key-points in the development of LSS is related to the dynamic phenomena. These phenomena usually lead to two different interpretations. The former one is related to the overall motion of the spacecraft, i.e., the motion of the centre of gravity and motion around the centre of gravity. The latter one is related to the local motion of the elastic elements that leads to oscillations. These oscillations have in turn a disturbing effect on the motion of the spacecraft. From an engineering perspective, the structural model of flexible spacecrafts is generally obtained via FEM involving thousands of degrees of freedom (DOFs). Many of them are not significant from the attitude control point of view. One of the procedures to reduce the structural DOFs is tied to the modal decomposition technique. In the present paper a technique to develop a control-oriented structural model will be proposed. Starting from a detailed FE model of the spacecraft and using a special modal condensation approach, a continuous model is defined. With this transformation the number of DOFs necessary to study the coupled elastic/rigid dynamic is reduced. The final dynamic model will be suitable for the control design implementation. In order to properly design a satellite controller, it is important to recall that the characteristic parameters of the satellite are uncertain. The effect that uncertainties have on control performance must be investigated. A possible solution is that, after the attitude controller is designed on the nominal model, a Verification and Validation (V&V) process is performed to guarantee a correct functionality under a large number of scenarios. The V&V process can be very lengthy and expensive: difficulty and cost do increase because of the overall system dimension that depends on the number of uncertainties. Uncertain parameters have to be parametrically investigated to determine robust performance of the control laws via gridding approaches. In particular in this paper we propose to consider two methods: (i) a conventional Monte Carlo analysis, and (ii) a worst-case analysis, i.e., an optimization process to find an estimation of the true worst-case behaviour. Both techniques allow to verify that the design is robust enough to meet the system performance specification in case of uncertainties. (C) 2012 Elsevier Ltd. All rights reserved.
2012
attitude control; structural dynamics; uncertainties and robustness; large flexible space structures; attittude control; robustness analysis; modal analysis
01 Pubblicazione su rivista::01a Articolo in rivista
Control-oriented modelization of a satellite with large flexible appendages and use of worst-case analysis to verify robustness to model uncertainties of attitude control / Gasbarri, Paolo; Monti, Riccardo; Giovanni, Campolo; Toglia, Chiara. - In: ACTA ASTRONAUTICA. - ISSN 0094-5765. - STAMPA. - 81:1(2012), pp. 214-226. [10.1016/j.actaastro.2012.07.016]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/478331
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 21
social impact