Microphysical and dynamical features of volcanic ash clouds can be quantitatively monitored by using ground-based microwave weather radars. These systems can provide data for determining the ash volume, total mass, and height of eruption clouds. In order to demonstrate the unique potential of this microwave active remote-sensing technique, the case study of the eruption of Augustine Volcano in Alaska in January 2006 is described and analyzed. Volume scan data, acquired by a NEXRAD WSR-88D S-band ground-based weather radar, are processed to automatically classify and estimate eruptive cloud particle concentration. The numerical results of the coupled model Z-reflectivity from Active Tracer High resolution Atmospheric Model (ATHAM), including particle aggregation processes and simulation of radar reflectivity from the ATHAM microphysical model, are exploited to train the inversion algorithm. The volcanic ash radar retrieval based on the ATHAM algorithm is a physical-statistical approach based on the backscattering microphysical model of volcanic cloud particles (hydrometeors, ash, and aggregates), used within a Bayesian classification and optimal regression algorithm. A sensitivity analysis is carried out to evaluate the overall error budget. The evolution of the Augustine eruption is discussed in terms of radar measurements and products, pointing out the unique features, the current limitations, and future improvements of radar remote sensing of volcanic plumes.

Model-Based Weather Radar Remote Sensing of Explosive Volcanic Ash Eruption / Marzano, FRANK SILVIO; Sara, Marchiotto; Christiane, Textor; David J., Schneider. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 48:10(2010), pp. 3591-3607. [10.1109/tgrs.2010.2047862]

Model-Based Weather Radar Remote Sensing of Explosive Volcanic Ash Eruption

MARZANO, FRANK SILVIO;
2010

Abstract

Microphysical and dynamical features of volcanic ash clouds can be quantitatively monitored by using ground-based microwave weather radars. These systems can provide data for determining the ash volume, total mass, and height of eruption clouds. In order to demonstrate the unique potential of this microwave active remote-sensing technique, the case study of the eruption of Augustine Volcano in Alaska in January 2006 is described and analyzed. Volume scan data, acquired by a NEXRAD WSR-88D S-band ground-based weather radar, are processed to automatically classify and estimate eruptive cloud particle concentration. The numerical results of the coupled model Z-reflectivity from Active Tracer High resolution Atmospheric Model (ATHAM), including particle aggregation processes and simulation of radar reflectivity from the ATHAM microphysical model, are exploited to train the inversion algorithm. The volcanic ash radar retrieval based on the ATHAM algorithm is a physical-statistical approach based on the backscattering microphysical model of volcanic cloud particles (hydrometeors, ash, and aggregates), used within a Bayesian classification and optimal regression algorithm. A sensitivity analysis is carried out to evaluate the overall error budget. The evolution of the Augustine eruption is discussed in terms of radar measurements and products, pointing out the unique features, the current limitations, and future improvements of radar remote sensing of volcanic plumes.
2010
microwave radars; volcanic eruption clouds; inversion methods; ash retrieval; numerical simulation; ash particle aggregation
01 Pubblicazione su rivista::01a Articolo in rivista
Model-Based Weather Radar Remote Sensing of Explosive Volcanic Ash Eruption / Marzano, FRANK SILVIO; Sara, Marchiotto; Christiane, Textor; David J., Schneider. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 48:10(2010), pp. 3591-3607. [10.1109/tgrs.2010.2047862]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/476123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact