Precipitation is a complex phenomenon which is characterized by a significant variability both in time and space. Conventional measurements, such those of rain gauges, can only provide a limited information of its microphysical properties and dynamical features. In this respect, disdrometer surface measurements can help in exploring the raindrop size distribution. This paper provides an overview of these observation techniques, their physical background and some recent results. Specifically, ground-based techniques to observe precipitation using surface disdrometers, multifrequency microwave radiometers and microwave polarimetric radars will be discussed and illustrated. By exploiting this remote and in-situ instrumentation, estimates of precipitation optical thickness, liquid, ice and melted hydrometeor category, and their size distribution can be obtained. (C) 2010 Elsevier B.V. All rights reserved.

Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data / Marzano, FRANK SILVIO; Domenico, Cimini; Mario, Montopoli. - In: ATMOSPHERIC RESEARCH. - ISSN 0169-8095. - STAMPA. - 97:4(2010), pp. 583-600. [10.1016/j.atmosres.2010.03.019]

Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data

MARZANO, FRANK SILVIO;
2010

Abstract

Precipitation is a complex phenomenon which is characterized by a significant variability both in time and space. Conventional measurements, such those of rain gauges, can only provide a limited information of its microphysical properties and dynamical features. In this respect, disdrometer surface measurements can help in exploring the raindrop size distribution. This paper provides an overview of these observation techniques, their physical background and some recent results. Specifically, ground-based techniques to observe precipitation using surface disdrometers, multifrequency microwave radiometers and microwave polarimetric radars will be discussed and illustrated. By exploiting this remote and in-situ instrumentation, estimates of precipitation optical thickness, liquid, ice and melted hydrometeor category, and their size distribution can be obtained. (C) 2010 Elsevier B.V. All rights reserved.
2010
disdrometer; ground-based radar; ground-based radiometer; hydrometeor microphysics and classification; microwave remote sensing; particle size distribution; precipitation
01 Pubblicazione su rivista::01a Articolo in rivista
Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data / Marzano, FRANK SILVIO; Domenico, Cimini; Mario, Montopoli. - In: ATMOSPHERIC RESEARCH. - ISSN 0169-8095. - STAMPA. - 97:4(2010), pp. 583-600. [10.1016/j.atmosres.2010.03.019]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/476086
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 66
social impact