Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is a well established technique useful in many land applications, such as tectonic movements, landslide monitoring and digital elevation model extraction. One of its major limitation is the atmospheric effect, and in particular the high water vapour spatial and temporal variability which introduces an unknown delay in the signal propagation. This paper describes the general approach and some results achieved in the framework of an ESA funded project devoted to the mapping of the water vapour with the aim to mitigate its effect in InSAR applications. Ground based (microwave radiometers, radiosoundings, GPS) and spaceborne observations (AMSR-E, MERIS, MODIS) of columnar water vapour were compared with Numerical Weather Prediction model runs in Central Italy during a 15-day experiment. A dense network of GPS receivers was deployed close to Como, in Northern Italy, to complement the operational network in order to derive Zenith Total Delay as well as Slant Delay which can support InSAR processing. A comparison with Atmospheric Phase Screens (APS) derived from a sequence of Envisat multi pass interferometric acquisitions processed using the Permanent Scatters technique on the two test sites has been also performed. The acquired experimental data and their comparison give a valuable idea of what can be done to gather information on water vapour, which, besides InSAR applications, plays a fundamental role in weather prediction and radio propagation studies. The work has been carried out in the framework of an ESA funded project, named "Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water Vapour Effects" (METAWAVE). This paper presents the general approach an the various methodologies exploited in the project, together with the overall intercomparison of the results. In deep details on the comparison with the InSAR APS maps derived by the PS technique, as well as on GPS receiver processing and water vapour tomography are reported in two companion papers. © 2011 IEEE.

Synergic use of EO, NWP and ground based measurements for the mitigation of vapour artefacts in SAR interferometry / Pierdicca, Nazzareno; F., Rocca; P., Basili; S., Bonafoni; D., Cimini; P., Ciotti; R., Ferretti; Marzano, FRANK SILVIO; Mattioli, Vinia; M., Montopoli; R., Notarpietro; D., Perissin; E., Pichelli; B., Rommen; G., Venuti. - STAMPA. - (2011), pp. 2566-2569. (Intervento presentato al convegno 2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011 tenutosi a Vancouver, BC nel 24 July 2011 through 29 July 2011) [10.1109/igarss.2011.6049765].

Synergic use of EO, NWP and ground based measurements for the mitigation of vapour artefacts in SAR interferometry

PIERDICCA, Nazzareno;MARZANO, FRANK SILVIO;MATTIOLI, VINIA;
2011

Abstract

Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is a well established technique useful in many land applications, such as tectonic movements, landslide monitoring and digital elevation model extraction. One of its major limitation is the atmospheric effect, and in particular the high water vapour spatial and temporal variability which introduces an unknown delay in the signal propagation. This paper describes the general approach and some results achieved in the framework of an ESA funded project devoted to the mapping of the water vapour with the aim to mitigate its effect in InSAR applications. Ground based (microwave radiometers, radiosoundings, GPS) and spaceborne observations (AMSR-E, MERIS, MODIS) of columnar water vapour were compared with Numerical Weather Prediction model runs in Central Italy during a 15-day experiment. A dense network of GPS receivers was deployed close to Como, in Northern Italy, to complement the operational network in order to derive Zenith Total Delay as well as Slant Delay which can support InSAR processing. A comparison with Atmospheric Phase Screens (APS) derived from a sequence of Envisat multi pass interferometric acquisitions processed using the Permanent Scatters technique on the two test sites has been also performed. The acquired experimental data and their comparison give a valuable idea of what can be done to gather information on water vapour, which, besides InSAR applications, plays a fundamental role in weather prediction and radio propagation studies. The work has been carried out in the framework of an ESA funded project, named "Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water Vapour Effects" (METAWAVE). This paper presents the general approach an the various methodologies exploited in the project, together with the overall intercomparison of the results. In deep details on the comparison with the InSAR APS maps derived by the PS technique, as well as on GPS receiver processing and water vapour tomography are reported in two companion papers. © 2011 IEEE.
2011
2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011
atmospheric corrections; atmospheric phase screen; sar interferometry; water vapour
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Synergic use of EO, NWP and ground based measurements for the mitigation of vapour artefacts in SAR interferometry / Pierdicca, Nazzareno; F., Rocca; P., Basili; S., Bonafoni; D., Cimini; P., Ciotti; R., Ferretti; Marzano, FRANK SILVIO; Mattioli, Vinia; M., Montopoli; R., Notarpietro; D., Perissin; E., Pichelli; B., Rommen; G., Venuti. - STAMPA. - (2011), pp. 2566-2569. (Intervento presentato al convegno 2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011 tenutosi a Vancouver, BC nel 24 July 2011 through 29 July 2011) [10.1109/igarss.2011.6049765].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/473838
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact