We introduce a model whose thermal conductivity diverges in dimension 1 and 2, while it remains finite in dimension 3. We consider a system of oscillators perturbed by a stochastic dynamics conserving momentum and energy. We compute thermal conductivity via Green-Kubo formula. In the harmonic case we compute the current-current time correlation function, that decay like t -d/2 in the unpinned case and like t -d/2-1 if an on-site harmonic potential is present. This implies a finite conductivity in d ≥ 3 or in pinned cases, and we compute it explicitly. For general anharmonic strictly convex interactions we prove some upper bounds for the conductivity that behave qualitatively as in the harmonic cases. © 2008 Springer-Verlag.

Thermal conductivity for a momentum conservative model / Basile, Giada; Cedric, Bernardin; Stefano, Olla. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 287:1(2009), pp. 67-98. [10.1007/s00220-008-0662-7]

Thermal conductivity for a momentum conservative model

BASILE, GIADA;
2009

Abstract

We introduce a model whose thermal conductivity diverges in dimension 1 and 2, while it remains finite in dimension 3. We consider a system of oscillators perturbed by a stochastic dynamics conserving momentum and energy. We compute thermal conductivity via Green-Kubo formula. In the harmonic case we compute the current-current time correlation function, that decay like t -d/2 in the unpinned case and like t -d/2-1 if an on-site harmonic potential is present. This implies a finite conductivity in d ≥ 3 or in pinned cases, and we compute it explicitly. For general anharmonic strictly convex interactions we prove some upper bounds for the conductivity that behave qualitatively as in the harmonic cases. © 2008 Springer-Verlag.
2009
01 Pubblicazione su rivista::01a Articolo in rivista
Thermal conductivity for a momentum conservative model / Basile, Giada; Cedric, Bernardin; Stefano, Olla. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 287:1(2009), pp. 67-98. [10.1007/s00220-008-0662-7]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/473152
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 51
social impact