A numerical simulator of satellite microwave radiometric observations of mountainous scenes, developed in a previous study, has been used to predict the relief effects on the measurements of a spaceborne radiometer. For this purpose, the trends of the error due to topography, i.e., the difference between the antenna temperature calculated for a topographically variable surface and that computed for a flat terrain versus the parameters representing the relief, have been analyzed. The analysis has been mainly performed for a mountainous area in the Alps by assuming a simplified land-cover scenario consisting of bare terrain with two roughness conditions (smooth and rough soils) and considering L- and C-bands, i.e., those most suitable for soil moisture retrieval. The results have revealed that the error in satellite microwave radiometric observations is particularly correlated to the mean values of the height and slope of the radiometric pixel, as well as to the standard deviations of the aspect angle and local incidence angle. Both a regression analysis and a neural-network approach have been applied to estimate the error as a function of the parameters representing the relief, using the simulator to build training and test sets. The prediction of the topography effects and their correction in radiometric images have turned out to be feasible, at least for the scenarios considered in this study.
Prediction of the error induced by topography in satellite microwave radiometric observations / Pulvirenti, Luca; Pierdicca, Nazzareno; Marzano, FRANK SILVIO. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - 49:9(2011), pp. 3180-3188. (Intervento presentato al convegno 11th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications (MicroRad 2010) tenutosi a Washington, DC nel MAR 01-04, 2010) [10.1109/tgrs.2010.2096514].
Prediction of the error induced by topography in satellite microwave radiometric observations
PULVIRENTI, Luca;PIERDICCA, Nazzareno;MARZANO, FRANK SILVIO
2011
Abstract
A numerical simulator of satellite microwave radiometric observations of mountainous scenes, developed in a previous study, has been used to predict the relief effects on the measurements of a spaceborne radiometer. For this purpose, the trends of the error due to topography, i.e., the difference between the antenna temperature calculated for a topographically variable surface and that computed for a flat terrain versus the parameters representing the relief, have been analyzed. The analysis has been mainly performed for a mountainous area in the Alps by assuming a simplified land-cover scenario consisting of bare terrain with two roughness conditions (smooth and rough soils) and considering L- and C-bands, i.e., those most suitable for soil moisture retrieval. The results have revealed that the error in satellite microwave radiometric observations is particularly correlated to the mean values of the height and slope of the radiometric pixel, as well as to the standard deviations of the aspect angle and local incidence angle. Both a regression analysis and a neural-network approach have been applied to estimate the error as a function of the parameters representing the relief, using the simulator to build training and test sets. The prediction of the topography effects and their correction in radiometric images have turned out to be feasible, at least for the scenarios considered in this study.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.