Stall induced vibrations place fundamental limitations on a fan stage performance and remains a persistent problem in the development of axial compressor and fan stages. Rotating stall is purely a fluid mechanic instability, whilst blade flutter, stall and surge flutter, and their variants, are aeroelastic instabilities that involve coupled fluid-structure interaction. Stall oscillation frequency lays in a relatively low-frequency band (less than 0.7- 0.5 shaft frequency), whilst mild surge oscillation frequency occurs usually in a much lower-order of frequency (typically <0.25-0.30) in high solidity industrial power fans. These mild surge oscillations can couple with fan blade aeroelastic modes. A loss in efficiency and high aeroelastic blade vibrations characterises fan performance in stall that can significantly increase stress levels in the blade. In this paper, the authors conducted an experimental study to investigate rotating stall recovery patterns in a high solidity axial power fan using different strategies. The authors drove the fan to stall at the design stagger-angle setting and then: i) operated a variable pitch mechanism in order to recover the unstable operation or ii) recover from stall by increasing rotational speed. In both cases the recovery patterns entails the modification of the operating point of the fan along the throttle line of the system. They measured pressure fluctuations in the fan tip region using flush-mounted probes. The authors studied the flow mechanisms for the stall recovery associated with the two proposed methods. They cross-correlated pressure fluctuations and analysed cross-spectra in order to clarify the influence of blade pitch, end-wall flow, rotational speed and tipleakage flow on stall recovery. Copyright © 2012 by ASME.

Stall control and recovery in a low-speed axial fan through the use of variable pitch in motion blades / Bianchi, Stefano; Corsini, Alessandro; Anthony G., Sheard. - ELETTRONICO. - 3:(2012), pp. 705-716. (Intervento presentato al convegno ASME Turbo Expo 2012 tenutosi a Copenhagen; Denmark nel JUN 11-15, 2012) [10.1115/gt2012-69042].

Stall control and recovery in a low-speed axial fan through the use of variable pitch in motion blades

BIANCHI, STEFANO;CORSINI, Alessandro;
2012

Abstract

Stall induced vibrations place fundamental limitations on a fan stage performance and remains a persistent problem in the development of axial compressor and fan stages. Rotating stall is purely a fluid mechanic instability, whilst blade flutter, stall and surge flutter, and their variants, are aeroelastic instabilities that involve coupled fluid-structure interaction. Stall oscillation frequency lays in a relatively low-frequency band (less than 0.7- 0.5 shaft frequency), whilst mild surge oscillation frequency occurs usually in a much lower-order of frequency (typically <0.25-0.30) in high solidity industrial power fans. These mild surge oscillations can couple with fan blade aeroelastic modes. A loss in efficiency and high aeroelastic blade vibrations characterises fan performance in stall that can significantly increase stress levels in the blade. In this paper, the authors conducted an experimental study to investigate rotating stall recovery patterns in a high solidity axial power fan using different strategies. The authors drove the fan to stall at the design stagger-angle setting and then: i) operated a variable pitch mechanism in order to recover the unstable operation or ii) recover from stall by increasing rotational speed. In both cases the recovery patterns entails the modification of the operating point of the fan along the throttle line of the system. They measured pressure fluctuations in the fan tip region using flush-mounted probes. The authors studied the flow mechanisms for the stall recovery associated with the two proposed methods. They cross-correlated pressure fluctuations and analysed cross-spectra in order to clarify the influence of blade pitch, end-wall flow, rotational speed and tipleakage flow on stall recovery. Copyright © 2012 by ASME.
2012
ASME Turbo Expo 2012
Aeroelastic instabilities; Experimental studies; Fundamental limitations
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Stall control and recovery in a low-speed axial fan through the use of variable pitch in motion blades / Bianchi, Stefano; Corsini, Alessandro; Anthony G., Sheard. - ELETTRONICO. - 3:(2012), pp. 705-716. (Intervento presentato al convegno ASME Turbo Expo 2012 tenutosi a Copenhagen; Denmark nel JUN 11-15, 2012) [10.1115/gt2012-69042].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/469742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact