The reverse water-gas shift reaction (CO2 + H2 → H2O + CO) has been studied over a clean Cu(110) single-crystal model catalyst at temperatures between 573 and 723 K. The steady-state kinetic measurements were carried out at medium pressures (10-2000 Torr) in a microreactor after cleaning and characterization of the sample under UHV conditions. The H2/CO2-pressure ratios varied from 1000: 1 to 1 : 10. The product buildup was monitored with a gas chromatograph (GC). The apparent activation energy is about 18 kcal/mol, and the reaction orders in H2 and CO2 depend strongly on the H2/CO2 ratio and temperature. The steady-state kinetics are compared favorably with the rates of elementary steps potentially involved in a "surface redox" reaction mechanism of the reverse and forward water-gas shift reaction involving the formation and removal of oxygen adatoms. Kinetic evidence that is tentatively attributed to a hydrogen-induced surface phase transition that affects the reaction rate, is also presented.

Kinetics of the reverse water-gas shift reaction over Cu(110) / K. H., Ernst; C. T., Campbell; Moretti, Giuliano. - In: JOURNAL OF CATALYSIS. - ISSN 0021-9517. - STAMPA. - 134:(1992), pp. 66-74. [10.1016/0021-9517(92)90210-9]

Kinetics of the reverse water-gas shift reaction over Cu(110)

MORETTI, GIULIANO
1992

Abstract

The reverse water-gas shift reaction (CO2 + H2 → H2O + CO) has been studied over a clean Cu(110) single-crystal model catalyst at temperatures between 573 and 723 K. The steady-state kinetic measurements were carried out at medium pressures (10-2000 Torr) in a microreactor after cleaning and characterization of the sample under UHV conditions. The H2/CO2-pressure ratios varied from 1000: 1 to 1 : 10. The product buildup was monitored with a gas chromatograph (GC). The apparent activation energy is about 18 kcal/mol, and the reaction orders in H2 and CO2 depend strongly on the H2/CO2 ratio and temperature. The steady-state kinetics are compared favorably with the rates of elementary steps potentially involved in a "surface redox" reaction mechanism of the reverse and forward water-gas shift reaction involving the formation and removal of oxygen adatoms. Kinetic evidence that is tentatively attributed to a hydrogen-induced surface phase transition that affects the reaction rate, is also presented.
1992
01 Pubblicazione su rivista::01a Articolo in rivista
Kinetics of the reverse water-gas shift reaction over Cu(110) / K. H., Ernst; C. T., Campbell; Moretti, Giuliano. - In: JOURNAL OF CATALYSIS. - ISSN 0021-9517. - STAMPA. - 134:(1992), pp. 66-74. [10.1016/0021-9517(92)90210-9]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/467024
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 98
social impact