Pressure inside the spray chamber plays a key role during coatings manufacturing by thermal spraying and coating properties can be strongly affected by the selected pressure value. Spraying at low pressure results in a longer plasma jet length, higher particle velocity, lower coating porosity and higher purity and phase stability. For what concerns plasma-particle interactions, a reduction of pressure value drastically decreases heat transfer towards particles, therefore high power plasma equipment must be used to achieve a suitable melting degree of sprayed po cyders. Effects of low pressure values are well known, but few investigation have been carried out on effects of pressure for values higher than 1,000 mbar. In this paper a preliminary evaluation of pressure effects on plasma jet modifications, particle velocity and coatings microstructure is presented. By using the very innovative CAPS (Controlled Atmosphere Plasma Spraying) system, Ni-20%Al powders were sprayed at different pressure values, up to 3,600 mbar. The length and width of the visible part of the plasma jet was measured and controlled. Average particle velocity was also evaluated as a function of pressure. Coatings, manufactured on stainless steel substrates, were characterized by means of scanning electron microscopy and energy dispersive spectroscopy, x-ray diffraction and Vickers microhardness measurements. Results indicate that the higher the spraying pressure the lower the plasma jet length and particle velocity, but also a lower selective evaporation of aluminum and higher microhardness values were observed.

Effects of pressure deposition on plasma jet and coatings microstructure / Valente, Teodoro; L., Bertamini; M., Tului. - (1996), pp. 463-470. (Intervento presentato al convegno 9th National Thermal Spray Conference & Exposition tenutosi a CINCINNATI, OH nel OCT 07-11, 1996).

Effects of pressure deposition on plasma jet and coatings microstructure

VALENTE, Teodoro;
1996

Abstract

Pressure inside the spray chamber plays a key role during coatings manufacturing by thermal spraying and coating properties can be strongly affected by the selected pressure value. Spraying at low pressure results in a longer plasma jet length, higher particle velocity, lower coating porosity and higher purity and phase stability. For what concerns plasma-particle interactions, a reduction of pressure value drastically decreases heat transfer towards particles, therefore high power plasma equipment must be used to achieve a suitable melting degree of sprayed po cyders. Effects of low pressure values are well known, but few investigation have been carried out on effects of pressure for values higher than 1,000 mbar. In this paper a preliminary evaluation of pressure effects on plasma jet modifications, particle velocity and coatings microstructure is presented. By using the very innovative CAPS (Controlled Atmosphere Plasma Spraying) system, Ni-20%Al powders were sprayed at different pressure values, up to 3,600 mbar. The length and width of the visible part of the plasma jet was measured and controlled. Average particle velocity was also evaluated as a function of pressure. Coatings, manufactured on stainless steel substrates, were characterized by means of scanning electron microscopy and energy dispersive spectroscopy, x-ray diffraction and Vickers microhardness measurements. Results indicate that the higher the spraying pressure the lower the plasma jet length and particle velocity, but also a lower selective evaporation of aluminum and higher microhardness values were observed.
1996
9780871705839
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/464779
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact