We prove a priori error estimates for a parabolic second order transmission problem across a prefractal interface K-n of Koch type which divides a given domain Omega into two non-convex sub-domains Omega(i)(n). By exploiting some regularity results for the solution in Omega(i)(n) we build a suitable mesh, compliant with the so-called "Grisvard" conditions, which allows to achieve an optimal rate of convergence for the semidiscrete approximation of the prefractal problem by Galerkin method. The discretization in time is carried out by the theta-method. (C) 2011 Elsevier Inc. All rights reserved.

Numerical approximation of transmission problems across Koch-type highly conductive layers / Lancia, Maria Rosaria; Cefalo, Massimo; Guido, Dell'Acqua. - In: APPLIED MATHEMATICS AND COMPUTATION. - ISSN 0096-3003. - 218:9(2012), pp. 5453-5473. [10.1016/j.amc.2011.11.033]

Numerical approximation of transmission problems across Koch-type highly conductive layers

LANCIA, Maria Rosaria;CEFALO, Massimo;
2012

Abstract

We prove a priori error estimates for a parabolic second order transmission problem across a prefractal interface K-n of Koch type which divides a given domain Omega into two non-convex sub-domains Omega(i)(n). By exploiting some regularity results for the solution in Omega(i)(n) we build a suitable mesh, compliant with the so-called "Grisvard" conditions, which allows to achieve an optimal rate of convergence for the semidiscrete approximation of the prefractal problem by Galerkin method. The discretization in time is carried out by the theta-method. (C) 2011 Elsevier Inc. All rights reserved.
2012
error bounds; finite elements; fractals; transmission problems
01 Pubblicazione su rivista::01a Articolo in rivista
Numerical approximation of transmission problems across Koch-type highly conductive layers / Lancia, Maria Rosaria; Cefalo, Massimo; Guido, Dell'Acqua. - In: APPLIED MATHEMATICS AND COMPUTATION. - ISSN 0096-3003. - 218:9(2012), pp. 5453-5473. [10.1016/j.amc.2011.11.033]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/459822
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact