The ability to orientate within familiar environments relies on the formation and use of a mental representation of the environment, namely a cognitive map. Neuropsychological and neuroimaging studies suggest that the retrosplenial and hippocampal brain regions are involved in topographical orientation. We combined functional magnetic resonance imaging with a virtual-reality paradigm to investigate the functional interaction of the hippocampus and retrosplenial cortex during the formation and utilization of cognitive maps by human subjects. We found that the anterior hippocampus is involved during the formation of the cognitive map, while the posterior hippocampus is involved when using it. In conjunction with the hippocampus, the retrosplenial cortex was active during both the formation and the use of the cognitive map. In accordance with earlier studies in non-human animals, these findings suggest that, while navigating within the environment, the retrosplenial cortex complements the hippocampal contribution to topographical orientation by updating the individual’s location as the frame of reference changes.
Retrosplenial and hippocampal brain regions in human navigation: a complementary functional contribution to the formation and use of cognitive maps / Iaria, Giuseppe; Chen, Jk; Guariglia, Cecilia; Ptito, A; Petrides, M.. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - STAMPA. - 25:(2007), pp. 890-899. [10.1111/j.1460-9568.2007.05371.x]
Retrosplenial and hippocampal brain regions in human navigation: a complementary functional contribution to the formation and use of cognitive maps
IARIA, GIUSEPPE;GUARIGLIA, Cecilia;
2007
Abstract
The ability to orientate within familiar environments relies on the formation and use of a mental representation of the environment, namely a cognitive map. Neuropsychological and neuroimaging studies suggest that the retrosplenial and hippocampal brain regions are involved in topographical orientation. We combined functional magnetic resonance imaging with a virtual-reality paradigm to investigate the functional interaction of the hippocampus and retrosplenial cortex during the formation and utilization of cognitive maps by human subjects. We found that the anterior hippocampus is involved during the formation of the cognitive map, while the posterior hippocampus is involved when using it. In conjunction with the hippocampus, the retrosplenial cortex was active during both the formation and the use of the cognitive map. In accordance with earlier studies in non-human animals, these findings suggest that, while navigating within the environment, the retrosplenial cortex complements the hippocampal contribution to topographical orientation by updating the individual’s location as the frame of reference changes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.