In this paper we study finite group symmetries of differential behaviors (i.e., kernels of linear constant coefficient partial differential operators). They lead us to study the actions of a finite group on free modules over a polynomial ring. We establish algebraic results which are then used to obtain canonical differential representations of symmetric differential behaviors. © 1993 Springer-Verlag London Limited.

Symmetries of differential behaviors and finite group actions on free modules over a polynomial ring / DE CONCINI, Corrado; Fabio, Fagnani. - In: MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS. - ISSN 0932-4194. - 6:4(1993), pp. 307-321. [10.1007/bf01211499]

Symmetries of differential behaviors and finite group actions on free modules over a polynomial ring

DE CONCINI, Corrado;
1993

Abstract

In this paper we study finite group symmetries of differential behaviors (i.e., kernels of linear constant coefficient partial differential operators). They lead us to study the actions of a finite group on free modules over a polynomial ring. We establish algebraic results which are then used to obtain canonical differential representations of symmetric differential behaviors. © 1993 Springer-Verlag London Limited.
1993
group action; partial differential equations; polynomial ring; reflections; symmetry
01 Pubblicazione su rivista::01a Articolo in rivista
Symmetries of differential behaviors and finite group actions on free modules over a polynomial ring / DE CONCINI, Corrado; Fabio, Fagnani. - In: MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS. - ISSN 0932-4194. - 6:4(1993), pp. 307-321. [10.1007/bf01211499]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/454402
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact