Thermally-sprayed Diamalloy 2002 is widely used as overlay coating in several applications for their good wear and corrosion protection. Although, in the past, any effort has been produced to deposit Diamalloy 2002 with a low degree of defectiveness, some residual porosity and cracks can often affect the final property of the resulting coatings. Different techniques are commonly used to improve the performance of Diamalloy 2002. Recently, laser post-treatment seems to be one of the most promising, being an effective, non-contact, mini-invasive technology. In this respect, the present investigation deals with the application of a continuous wave high power diode laser to post-treat Diamalloy 2002 deposited by HVOF on AA 6082 T6 aluminum alloy. Different laser power and scan speed were investigated in order to identify the process window most favorable to improve the overall mechanical property of Diamalloy 2002 coatings. The changes in morphology, micro-structure and chemical composition of the coatings after laser post-treatments were investigated by inductive gage profilometry and combined SEM-EDXS. Further, the changes in the mechanical properties of the coatings were investigated in terms of hardness, elastic modulus, scratch and wear resistance. Consistent improvements in mechanical property can be achieved by Diamalloy 2002 when laser processing is performed at higher power and reduced scan speed. Yet, too much increase in power density should be always avoided as it can be detrimental to the final property of the coatings and cause high defectiveness and their failure.

Thermally-sprayed Diamalloy 2002 is widely used as overlay coating in several applications for their good wear and corrosion protection. Although, in the past, any effort has been produced to deposit Diamalloy 2002 with a low degree of defectiveness, some residual porosity and cracks can often affect the final property of the resulting coatings. Different techniques are commonly used to improve the performance of Diamalloy 2002. Recently, laser post-treatment seems to be one of the most promising, being an effective, non-contact, mini-invasive technology. In this respect, the present investigation deals with the application of a continuous wave high power diode laser to post-treat Diamalloy 2002 deposited by HVOF on AA 6082 T6 aluminum alloy. Different laser power and scan speed were investigated in order to identify the process window most favorable to improve the overall mechanical property of Diamalloy 2002 coatings. The changes in morphology, micro-structure and chemical composition of the coatings after laser post-treatments were investigated by inductive gage profilometry and combined SEM-EDXS. Further, the changes in the mechanical properties of the coatings were investigated in terms of hardness, elastic modulus, scratch and wear resistance. Consistent improvements in mechanical property can be achieved by Diamalloy 2002 when laser processing is performed at higher power and reduced scan speed. Yet, too much increase in power density should be always avoided as it can be detrimental to the final property of the coatings and cause high defectiveness and their failure. (C) 2012 Elsevier Ltd. All rights reserved.

Laser surface modification (LSM) of thermally-sprayed Diamalloy 2002 coating / Gisario, Annamaria; M., Barletta; Veniali, Francesco. - In: OPTICS AND LASER TECHNOLOGY. - ISSN 0030-3992. - STAMPA. - 44:6(2012), pp. 1942-1958. [10.1016/j.optlastec.2012.02.011]

Laser surface modification (LSM) of thermally-sprayed Diamalloy 2002 coating

GISARIO, ANNAMARIA;VENIALI, Francesco
2012

Abstract

Thermally-sprayed Diamalloy 2002 is widely used as overlay coating in several applications for their good wear and corrosion protection. Although, in the past, any effort has been produced to deposit Diamalloy 2002 with a low degree of defectiveness, some residual porosity and cracks can often affect the final property of the resulting coatings. Different techniques are commonly used to improve the performance of Diamalloy 2002. Recently, laser post-treatment seems to be one of the most promising, being an effective, non-contact, mini-invasive technology. In this respect, the present investigation deals with the application of a continuous wave high power diode laser to post-treat Diamalloy 2002 deposited by HVOF on AA 6082 T6 aluminum alloy. Different laser power and scan speed were investigated in order to identify the process window most favorable to improve the overall mechanical property of Diamalloy 2002 coatings. The changes in morphology, micro-structure and chemical composition of the coatings after laser post-treatments were investigated by inductive gage profilometry and combined SEM-EDXS. Further, the changes in the mechanical properties of the coatings were investigated in terms of hardness, elastic modulus, scratch and wear resistance. Consistent improvements in mechanical property can be achieved by Diamalloy 2002 when laser processing is performed at higher power and reduced scan speed. Yet, too much increase in power density should be always avoided as it can be detrimental to the final property of the coatings and cause high defectiveness and their failure.
2012
Thermally-sprayed Diamalloy 2002 is widely used as overlay coating in several applications for their good wear and corrosion protection. Although, in the past, any effort has been produced to deposit Diamalloy 2002 with a low degree of defectiveness, some residual porosity and cracks can often affect the final property of the resulting coatings. Different techniques are commonly used to improve the performance of Diamalloy 2002. Recently, laser post-treatment seems to be one of the most promising, being an effective, non-contact, mini-invasive technology. In this respect, the present investigation deals with the application of a continuous wave high power diode laser to post-treat Diamalloy 2002 deposited by HVOF on AA 6082 T6 aluminum alloy. Different laser power and scan speed were investigated in order to identify the process window most favorable to improve the overall mechanical property of Diamalloy 2002 coatings. The changes in morphology, micro-structure and chemical composition of the coatings after laser post-treatments were investigated by inductive gage profilometry and combined SEM-EDXS. Further, the changes in the mechanical properties of the coatings were investigated in terms of hardness, elastic modulus, scratch and wear resistance. Consistent improvements in mechanical property can be achieved by Diamalloy 2002 when laser processing is performed at higher power and reduced scan speed. Yet, too much increase in power density should be always avoided as it can be detrimental to the final property of the coatings and cause high defectiveness and their failure. (C) 2012 Elsevier Ltd. All rights reserved.
diode laser; hardness; surface treatment
01 Pubblicazione su rivista::01a Articolo in rivista
Laser surface modification (LSM) of thermally-sprayed Diamalloy 2002 coating / Gisario, Annamaria; M., Barletta; Veniali, Francesco. - In: OPTICS AND LASER TECHNOLOGY. - ISSN 0030-3992. - STAMPA. - 44:6(2012), pp. 1942-1958. [10.1016/j.optlastec.2012.02.011]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/454024
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact