Recent years have seen a great deal of work that exploits collaborative, semi-structured content for Artificial Intelligence (AI) and Natural Language Processing (NLP). This special issue of the Artificial Intelligence Journal presents a variety of state-of-the-art contributions, each of which illustrates the substantial impact that work on leveraging semi-structured content is having on AI and NLP as it continuously fosters new directions of cutting-edge research. We contextualize the papers collected in this special issue by providing a detailed overview of previous work on collaborative, semi-structured resources. The survey is made up of two main logical parts: in the first part, we present the main characteristics of collaborative resources that make them attractive for AI and NLP research; in the second part, we present an overview of how these features have been exploited to tackle a variety of long-standing issues in the two fields, in particular the acquisition of large amounts of machine-readable knowledge, and its application to a wide range of tasks. The overall picture shows that not only are semi-structured resources enabling a renaissance of knowledge-rich AI techniques, but also that significant advances in high-end applications that require deep understanding capabilities can be achieved by synergistically exploiting large amounts of machine-readable structured knowledge in combination with sound statistical AI and NLP techniques. © 2012 Elsevier B.V. All rights reserved.

Collaboratively built semi-structured content and Artificial Intelligence: The story so far / Navigli, Roberto; Ponzetto, SIMONE PAOLO. - In: ARTIFICIAL INTELLIGENCE. - ISSN 0004-3702. - STAMPA. - 194:(2013), pp. 2-27. [10.1016/j.artint.2012.10.002]

Collaboratively built semi-structured content and Artificial Intelligence: The story so far

NAVIGLI, ROBERTO;PONZETTO, SIMONE PAOLO
2013

Abstract

Recent years have seen a great deal of work that exploits collaborative, semi-structured content for Artificial Intelligence (AI) and Natural Language Processing (NLP). This special issue of the Artificial Intelligence Journal presents a variety of state-of-the-art contributions, each of which illustrates the substantial impact that work on leveraging semi-structured content is having on AI and NLP as it continuously fosters new directions of cutting-edge research. We contextualize the papers collected in this special issue by providing a detailed overview of previous work on collaborative, semi-structured resources. The survey is made up of two main logical parts: in the first part, we present the main characteristics of collaborative resources that make them attractive for AI and NLP research; in the second part, we present an overview of how these features have been exploited to tackle a variety of long-standing issues in the two fields, in particular the acquisition of large amounts of machine-readable knowledge, and its application to a wide range of tasks. The overall picture shows that not only are semi-structured resources enabling a renaissance of knowledge-rich AI techniques, but also that significant advances in high-end applications that require deep understanding capabilities can be achieved by synergistically exploiting large amounts of machine-readable structured knowledge in combination with sound statistical AI and NLP techniques. © 2012 Elsevier B.V. All rights reserved.
2013
knowledge acquisition; knowledge-rich methods; semantic networks
01 Pubblicazione su rivista::01a Articolo in rivista
Collaboratively built semi-structured content and Artificial Intelligence: The story so far / Navigli, Roberto; Ponzetto, SIMONE PAOLO. - In: ARTIFICIAL INTELLIGENCE. - ISSN 0004-3702. - STAMPA. - 194:(2013), pp. 2-27. [10.1016/j.artint.2012.10.002]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/454000
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 137
  • ???jsp.display-item.citation.isi??? 84
social impact