The socalled Grad-Shafranov equation is a semilinear elliptic equation which is commonly used to model the plasma equlibrium in a Tokamak. We study an inverse problem associated with this equation. We show that knowledge of the normal derivative of the poloidal magnetic flux on the plasma boundary uniquely determines the functional form of the source terms within the class of analytic functions, provided the boundary has a (certain type of) corner. This result may in some ways be seen as an extension of a previously established result for the equation DELTAu = -f(u) less-than-or-equal-to 0

An Inverse Problem Originating from Magnetohydrodynamics II. The Case of the Grad-Shafranov Equation / Beretta, Elena; M., Vogelius. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 41:(1992), pp. 1081-1118. [10.1512/iumj.1992.41.41055]

An Inverse Problem Originating from Magnetohydrodynamics II. The Case of the Grad-Shafranov Equation

BERETTA, Elena;
1992

Abstract

The socalled Grad-Shafranov equation is a semilinear elliptic equation which is commonly used to model the plasma equlibrium in a Tokamak. We study an inverse problem associated with this equation. We show that knowledge of the normal derivative of the poloidal magnetic flux on the plasma boundary uniquely determines the functional form of the source terms within the class of analytic functions, provided the boundary has a (certain type of) corner. This result may in some ways be seen as an extension of a previously established result for the equation DELTAu = -f(u) less-than-or-equal-to 0
1992
01 Pubblicazione su rivista::01a Articolo in rivista
An Inverse Problem Originating from Magnetohydrodynamics II. The Case of the Grad-Shafranov Equation / Beretta, Elena; M., Vogelius. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 41:(1992), pp. 1081-1118. [10.1512/iumj.1992.41.41055]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/453141
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact