The alkylation of m-xylene by Me3C+ ions has been studied in the gas phase with the aim of assessing the kinetic role of proton transfer from intermediate arenium ions. Hydrogen kinetic isotope effects (KIEs) emerging from the reaction of m-xylene-4-d and of m-xylene/m-xylene-d10 mixtures have been exploited as mechanistic probes. The Me3C substitution at the 4-position displays a base-strength-dependent KIE related to rate-determining deprotonation of arenium intermediates. The Me3C+ reaction at the 5-position is instead characterized by a base-independent KIE due to 1,2-hydrogen shift to form a highly stable isomeric arenium ion. When the latter species originates from m-xylene-4-d, its neutralization involves an intramolecular competition of proton vs deuteron abstraction, manifesting a net primary KIE. Factors affecting its magnitude and base-strength dependence are discussed.
Aromatic Alkylation by Gaseous Me3C+ Ions. Kinetic Role of Deprotonation of Intermediate Arenium Ions / Crestoni, Maria Elisa; Fornarini, Simonetta. - In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - ISSN 0002-7863. - STAMPA. - 116:(1994), pp. 5873-5879. [10.1021/ja00092a043]
Aromatic Alkylation by Gaseous Me3C+ Ions. Kinetic Role of Deprotonation of Intermediate Arenium Ions
CRESTONI, Maria Elisa;FORNARINI, Simonetta
1994
Abstract
The alkylation of m-xylene by Me3C+ ions has been studied in the gas phase with the aim of assessing the kinetic role of proton transfer from intermediate arenium ions. Hydrogen kinetic isotope effects (KIEs) emerging from the reaction of m-xylene-4-d and of m-xylene/m-xylene-d10 mixtures have been exploited as mechanistic probes. The Me3C substitution at the 4-position displays a base-strength-dependent KIE related to rate-determining deprotonation of arenium intermediates. The Me3C+ reaction at the 5-position is instead characterized by a base-independent KIE due to 1,2-hydrogen shift to form a highly stable isomeric arenium ion. When the latter species originates from m-xylene-4-d, its neutralization involves an intramolecular competition of proton vs deuteron abstraction, manifesting a net primary KIE. Factors affecting its magnitude and base-strength dependence are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.