Three members of the protease-activated receptor family, PAR1, PAR3 and PAR4, are activated when thrombin Cleaves the receptor N-terminus, exposing a tethered ligand. Proteases other than thrombin can also cleave PAR family members and, depending upon whether this exposes or removes the tethered ligand, either activate or disable the receptor. For example, on human platelets PAR1 is disabled by cathepsin G, although aggregation still occurs because cathepsin G can activate PARA The present studies examine the interaction of cathepsin G and a second neutrophil protease, elastase, with PAR3 using two model systems: COS-7 cells transfected with human PAR3 and mouse plate lets, which express PAR3 and PAR4, but not PAR1. In contrast to human platelets, cathepsin G did not aggregate murine platelets, and prevented their activation only at low thrombin concentrations. Elastase had no effect on thrombin responses in mouse platelets, but when added to COS cells expressing human PAR3, both cathepsin G and elastase prevented activation of phospholipase C by thrombin. Notably, this inhibition occurred without loss of the binding sites for two monoclonal antibodies that flank the tethered ligand on human PAR3; We therefore conclude that 1) exposure to cathepsin G disables signaling through human PAR3, and prevents murine PAR3 from serving its normal role, which is to facilitate PAR4 cleavage at low thrombin concentrations, 2) elastase disables human, but not murine, PAR3, 3) in contrast to human PAR4, mouse PAR4 will not support platelet aggregation in response to cathepsin G, and 4) the inactivation of human PAR3 by cathepsin G and elastase involves a mechanism other than amputation of the tethered ligand domain. These results extend the range of possible interactions between PAR family members and proteases, and provide further support for species-specific differences in the interaction of these receptors with proteases other than thrombin.

Neutrophil proteases can inactivate human PAR3 and abolish the co-receptor function of PAR3 on murine platelets / A., Cumashi; H., Ansuini; N., Celli; DE BLASI, Antonio; P. J., O'Brien; L. F., Brass; M., Molino. - In: THROMBOSIS AND HAEMOSTASIS. - ISSN 0340-6245. - STAMPA. - 85:3(2001), pp. 533-538.

Neutrophil proteases can inactivate human PAR3 and abolish the co-receptor function of PAR3 on murine platelets

DE BLASI, ANTONIO;
2001

Abstract

Three members of the protease-activated receptor family, PAR1, PAR3 and PAR4, are activated when thrombin Cleaves the receptor N-terminus, exposing a tethered ligand. Proteases other than thrombin can also cleave PAR family members and, depending upon whether this exposes or removes the tethered ligand, either activate or disable the receptor. For example, on human platelets PAR1 is disabled by cathepsin G, although aggregation still occurs because cathepsin G can activate PARA The present studies examine the interaction of cathepsin G and a second neutrophil protease, elastase, with PAR3 using two model systems: COS-7 cells transfected with human PAR3 and mouse plate lets, which express PAR3 and PAR4, but not PAR1. In contrast to human platelets, cathepsin G did not aggregate murine platelets, and prevented their activation only at low thrombin concentrations. Elastase had no effect on thrombin responses in mouse platelets, but when added to COS cells expressing human PAR3, both cathepsin G and elastase prevented activation of phospholipase C by thrombin. Notably, this inhibition occurred without loss of the binding sites for two monoclonal antibodies that flank the tethered ligand on human PAR3; We therefore conclude that 1) exposure to cathepsin G disables signaling through human PAR3, and prevents murine PAR3 from serving its normal role, which is to facilitate PAR4 cleavage at low thrombin concentrations, 2) elastase disables human, but not murine, PAR3, 3) in contrast to human PAR4, mouse PAR4 will not support platelet aggregation in response to cathepsin G, and 4) the inactivation of human PAR3 by cathepsin G and elastase involves a mechanism other than amputation of the tethered ligand domain. These results extend the range of possible interactions between PAR family members and proteases, and provide further support for species-specific differences in the interaction of these receptors with proteases other than thrombin.
2001
cathepsin g; protease-activated receptors; proteases; thrombin
01 Pubblicazione su rivista::01a Articolo in rivista
Neutrophil proteases can inactivate human PAR3 and abolish the co-receptor function of PAR3 on murine platelets / A., Cumashi; H., Ansuini; N., Celli; DE BLASI, Antonio; P. J., O'Brien; L. F., Brass; M., Molino. - In: THROMBOSIS AND HAEMOSTASIS. - ISSN 0340-6245. - STAMPA. - 85:3(2001), pp. 533-538.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/452763
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 39
social impact