We study the asymptotic behavior of a sequence of Dirichlet problems for second order linear operators in divergence form where the matrices are uniformly elliptic and possibly non symmetric. On account of the variational principle of Chercaev and Gibiansky, we are able to prove a variational characterization of the H-convergence of the sequence of matrices in terms of the Gamma-convergence of suitably associated quadratic forms.

Asymptotic analysis of non-symmetric linear operators via Gamma-convergence / Ansini, Nadia; Caterina Ida, Zeppieri. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - ELETTRONICO. - 44:3(2012), pp. 1617-1635. [10.1137/110834330]

Asymptotic analysis of non-symmetric linear operators via Gamma-convergence

ANSINI, NADIA;
2012

Abstract

We study the asymptotic behavior of a sequence of Dirichlet problems for second order linear operators in divergence form where the matrices are uniformly elliptic and possibly non symmetric. On account of the variational principle of Chercaev and Gibiansky, we are able to prove a variational characterization of the H-convergence of the sequence of matrices in terms of the Gamma-convergence of suitably associated quadratic forms.
2012
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotic analysis of non-symmetric linear operators via Gamma-convergence / Ansini, Nadia; Caterina Ida, Zeppieri. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - ELETTRONICO. - 44:3(2012), pp. 1617-1635. [10.1137/110834330]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/443468
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact