We prove that for every proper minor-closed class I of graphs there exists a constant c such that for every integer n the class I includes at most n ! c(n) graphs with vertex-set (1,2,...,n). This answers a question of Welsh. (c) 2006 Robin Thomas. Published by Elsevier Inc. All rights reserved.

Proper minor-closed families are small / Serguei, Norine; Paul, Seymour; R., Thomas; Wollan, PAUL JOSEPH. - In: JOURNAL OF COMBINATORIAL THEORY. - ISSN 0095-8956. - 96:5(2006), pp. 754-757. [10.1016/j.jctb.2006.01.006]

Proper minor-closed families are small

WOLLAN, PAUL JOSEPH
2006

Abstract

We prove that for every proper minor-closed class I of graphs there exists a constant c such that for every integer n the class I includes at most n ! c(n) graphs with vertex-set (1,2,...,n). This answers a question of Welsh. (c) 2006 Robin Thomas. Published by Elsevier Inc. All rights reserved.
2006
graph; minor; minor-closed family
01 Pubblicazione su rivista::01a Articolo in rivista
Proper minor-closed families are small / Serguei, Norine; Paul, Seymour; R., Thomas; Wollan, PAUL JOSEPH. - In: JOURNAL OF COMBINATORIAL THEORY. - ISSN 0095-8956. - 96:5(2006), pp. 754-757. [10.1016/j.jctb.2006.01.006]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/443294
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 46
social impact