We prove there exists a function f (k) such that for every f (k)-connected graph G and for every edge e epsilon E(G), there exists an induced cycle C containing e such that G - E(C) is k-connected. This proves a weakening of a conjecture of Lovasz due to Kriesell. (C) 2008 Elsevier Inc. All rights reserved.
A weaker version of Lovasz' path removal conjecture / K. I., Kawarabayashi; O., Lee; B., Reed; Wollan, PAUL JOSEPH. - In: JOURNAL OF COMBINATORIAL THEORY. - ISSN 0095-8956. - 98:(2008), pp. 972-979. [10.1016/j.jctb.2007.11.003]
A weaker version of Lovasz' path removal conjecture
WOLLAN, PAUL JOSEPH
2008
Abstract
We prove there exists a function f (k) such that for every f (k)-connected graph G and for every edge e epsilon E(G), there exists an induced cycle C containing e such that G - E(C) is k-connected. This proves a weakening of a conjecture of Lovasz due to Kriesell. (C) 2008 Elsevier Inc. All rights reserved.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.