In this paper, we investigate the effect of packet size selection on the performance of media access control (MAC) protocols for underwater wireless sensor networks, namely, carrier sense multiple access (CSMA) and the distance-aware collision avoidance protocol (DACAP). Our comparative analysis, conducted via ns-2 simulations, considers scenarios with varying, nonzero bit error rate (BER) and interference. We investigate metrics such as throughput efficiency (the ratio between the delivered bit rate and the offered bit rate), end-to-end packet latency, measured “per meter” to allow for different sizes of deployment areas, and the energy consumed to correctly deliver an information bit to the network collection point. Our results show the dependence of these metrics on the packet size, indicating the existence of an optimum. The optimum packet size is found to depend on the protocol characteristics, the bit rate, and the BER. For each protocol and scenario considered, we determine the packet size that optimizes throughput performance, and we show its effect on the normalized packet latency and on energy consumption.
Optimized Packet Size Selection in Underwater WSN Communications / S., Basagni; Petrioli, Chiara; Petroccia, Roberto; M., Stojanovic. - In: IEEE JOURNAL OF OCEANIC ENGINEERING. - ISSN 0364-9059. - STAMPA. - 37:(2012), pp. 321-337. [10.1109/JOE.2012.2197271]
Optimized Packet Size Selection in Underwater WSN Communications
PETRIOLI, Chiara;PETROCCIA, Roberto;
2012
Abstract
In this paper, we investigate the effect of packet size selection on the performance of media access control (MAC) protocols for underwater wireless sensor networks, namely, carrier sense multiple access (CSMA) and the distance-aware collision avoidance protocol (DACAP). Our comparative analysis, conducted via ns-2 simulations, considers scenarios with varying, nonzero bit error rate (BER) and interference. We investigate metrics such as throughput efficiency (the ratio between the delivered bit rate and the offered bit rate), end-to-end packet latency, measured “per meter” to allow for different sizes of deployment areas, and the energy consumed to correctly deliver an information bit to the network collection point. Our results show the dependence of these metrics on the packet size, indicating the existence of an optimum. The optimum packet size is found to depend on the protocol characteristics, the bit rate, and the BER. For each protocol and scenario considered, we determine the packet size that optimizes throughput performance, and we show its effect on the normalized packet latency and on energy consumption.File | Dimensione | Formato | |
---|---|---|---|
VE_2012_11573-443094.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.74 MB
Formato
Adobe PDF
|
3.74 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.