Laser ranging, both Lunar (LLR) and Satellite Laser Ranging (SLR), is one of the most accurate techniques to test gravitational physics and Einstein's theory of General Relativity. Lunar Laser Ranging has provided very accurate tests of both the strong equivalence principle, at the foundations of General Relativity, and of the weak equivalence principle, at the basis of any metric theory of gravity; it has provided strong limits to the values of the so-called PPN (Parametrized Post-Newtonian) parameters, that are used to test the post-Newtonian limit of General Relativity, strong limits to conceivable deviations to the inverse square law for very weak gravity and accurate measurements of the geodetic precession, an effect predicted by General Relativity. Satellite laser ranging has provided strong limits to deviations to the inverse square gravity law, at a different range with respect to LLR, and in particular has given the first direct test of the gravitomagnetic field by measuring the gravitomagnetic shift of the node of a satellite, a frame-dragging effect also called Lense-Thirring effect. Here, after an introduction to gravitomagnetism and frame-dragging, we describe the latest results in measuring the Lense-Thirring effect using the LAGEOS satellites and the latest gravity field models obtained by the space mission GRACE. Finally, we describe an update of the LARES (LAser RElativity Satellite) mission. LARES is planned for launch in 2011 to further improve the accuracy in the measurement of frame-dragging. © Societa Italiana di Fisica/Springer-Verlag 2011.

Testing gravitational physics with satellite laser ranging / Ignazio, Ciufolini; Paolozzi, Antonio; Erricos C., Pavlis; John, Ries; Rolf, Koenig; Richard, Matzner; Sindoni, Giampiero; Neumayer, Hans. - In: THE EUROPEAN PHYSICAL JOURNAL PLUS. - ISSN 2190-5444. - 126:8(2011), pp. 1-19. [10.1140/epjp/i2011-11072-2]

Testing gravitational physics with satellite laser ranging

PAOLOZZI, Antonio;SINDONI, GIAMPIERO;
2011

Abstract

Laser ranging, both Lunar (LLR) and Satellite Laser Ranging (SLR), is one of the most accurate techniques to test gravitational physics and Einstein's theory of General Relativity. Lunar Laser Ranging has provided very accurate tests of both the strong equivalence principle, at the foundations of General Relativity, and of the weak equivalence principle, at the basis of any metric theory of gravity; it has provided strong limits to the values of the so-called PPN (Parametrized Post-Newtonian) parameters, that are used to test the post-Newtonian limit of General Relativity, strong limits to conceivable deviations to the inverse square law for very weak gravity and accurate measurements of the geodetic precession, an effect predicted by General Relativity. Satellite laser ranging has provided strong limits to deviations to the inverse square gravity law, at a different range with respect to LLR, and in particular has given the first direct test of the gravitomagnetic field by measuring the gravitomagnetic shift of the node of a satellite, a frame-dragging effect also called Lense-Thirring effect. Here, after an introduction to gravitomagnetism and frame-dragging, we describe the latest results in measuring the Lense-Thirring effect using the LAGEOS satellites and the latest gravity field models obtained by the space mission GRACE. Finally, we describe an update of the LARES (LAser RElativity Satellite) mission. LARES is planned for launch in 2011 to further improve the accuracy in the measurement of frame-dragging. © Societa Italiana di Fisica/Springer-Verlag 2011.
2011
earth gravity models; general relativity; gravitomagnetic field
01 Pubblicazione su rivista::01a Articolo in rivista
Testing gravitational physics with satellite laser ranging / Ignazio, Ciufolini; Paolozzi, Antonio; Erricos C., Pavlis; John, Ries; Rolf, Koenig; Richard, Matzner; Sindoni, Giampiero; Neumayer, Hans. - In: THE EUROPEAN PHYSICAL JOURNAL PLUS. - ISSN 2190-5444. - 126:8(2011), pp. 1-19. [10.1140/epjp/i2011-11072-2]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/442869
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 43
social impact