We perform a detailed study of the critical behavior of the mean field diluted Ising ferromagnet using analytical and numerical tools. We obtain self-averaging for the magnetization and write down an expansion for the free energy close to the critical line. The scaling of the magnetization is also rigorously obtained and compared with extensive Monte Carlo simulations. We explain the transition from an ergodic region to a non-trivial phase by commutativity breaking of the infinite volume limit and a suitable vanishing field. We find full agreement among theory, simulations and previous results. © 2008 IOP Publishing Ltd.

Criticality in diluted ferromagnets / Agliari, Elena; Barra, Adriano; Federico, Camboni. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2008:10(2008), p. P10003. [10.1088/1742-5468/2008/10/p10003]

Criticality in diluted ferromagnets

BARRA, ADRIANO;
2008

Abstract

We perform a detailed study of the critical behavior of the mean field diluted Ising ferromagnet using analytical and numerical tools. We obtain self-averaging for the magnetization and write down an expansion for the free energy close to the critical line. The scaling of the magnetization is also rigorously obtained and compared with extensive Monte Carlo simulations. We explain the transition from an ergodic region to a non-trivial phase by commutativity breaking of the infinite volume limit and a suitable vanishing field. We find full agreement among theory, simulations and previous results. © 2008 IOP Publishing Ltd.
2008
cavity and replica method; classical phase transitions (theory); critical exponents and amplitudes (theory); gauge theories
01 Pubblicazione su rivista::01a Articolo in rivista
Criticality in diluted ferromagnets / Agliari, Elena; Barra, Adriano; Federico, Camboni. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2008:10(2008), p. P10003. [10.1088/1742-5468/2008/10/p10003]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/442857
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact