Interpolation techniques have become, in the past decades, a powerful approach to describe several properties of spin glasses within a simple mathematical framework. Intrinsically, for their construction, these schemes were naturally implemented in the cavity field technique, or its variants such as stochastic stability and random overlap structures. However the first and most famous approach to mean field statistical mechanics with quenched disorder is the replica trick. Among the models where these methods have been used (namely, dealing with frustration and complexity), probably the best known is the Sherrington-Kirkpatrick spin glass. In this paper we apply the interpolation scheme to the original replica trick framework and test it directly on the cited paradigmatic model. Although the problem, at a mathematical level, has been deeply investigated by Talagrand, it is still rich in information from a theoretical physics perspective; in fact, by treating the number of replicas n is an element of (0, 1] as an interpolating parameter (far from its original interpretation) the proof of the attendant commutativity of the zero replica and the infinite volume limits can be easily obtained. Further, within this perspective, we can naturally think of n as a quenching temperature close to that introduced in off-equilibrium approaches to gain some new insight into our understanding of the off-equilibrium features encountered in equilibrium statistical mechanics of spin glasses.

Interpolating the Sherrington-Kirkpatrick replica trick / Barra, Adriano; Guerra, Francesco; Emanuele, Mingione. - In: PHILOSOPHICAL MAGAZINE. - ISSN 1478-6435. - 92:1-3(2012), pp. 78-97. [10.1080/14786435.2011.637979]

Interpolating the Sherrington-Kirkpatrick replica trick

BARRA, ADRIANO;GUERRA, Francesco;
2012

Abstract

Interpolation techniques have become, in the past decades, a powerful approach to describe several properties of spin glasses within a simple mathematical framework. Intrinsically, for their construction, these schemes were naturally implemented in the cavity field technique, or its variants such as stochastic stability and random overlap structures. However the first and most famous approach to mean field statistical mechanics with quenched disorder is the replica trick. Among the models where these methods have been used (namely, dealing with frustration and complexity), probably the best known is the Sherrington-Kirkpatrick spin glass. In this paper we apply the interpolation scheme to the original replica trick framework and test it directly on the cited paradigmatic model. Although the problem, at a mathematical level, has been deeply investigated by Talagrand, it is still rich in information from a theoretical physics perspective; in fact, by treating the number of replicas n is an element of (0, 1] as an interpolating parameter (far from its original interpretation) the proof of the attendant commutativity of the zero replica and the infinite volume limits can be easily obtained. Further, within this perspective, we can naturally think of n as a quenching temperature close to that introduced in off-equilibrium approaches to gain some new insight into our understanding of the off-equilibrium features encountered in equilibrium statistical mechanics of spin glasses.
2012
cavity method; replica trick; spin glasses
01 Pubblicazione su rivista::01a Articolo in rivista
Interpolating the Sherrington-Kirkpatrick replica trick / Barra, Adriano; Guerra, Francesco; Emanuele, Mingione. - In: PHILOSOPHICAL MAGAZINE. - ISSN 1478-6435. - 92:1-3(2012), pp. 78-97. [10.1080/14786435.2011.637979]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/442670
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact