We prove that the asymptotic behaviour of the solutions of Dirichlet problems for second-order, linear, not necessarily symmetric elliptic equations in perforated domains of the form Omega(h) = OmegaE-h is uniquely determined by the asymptotic behaviour, as h --> infinity, of suitable capacities of the sets B boolean AND E-h, where B runs in a conveniently large class of subsets of Omega.

The capacity method for asymptotic Dirichlet problems / G., Dal Maso; Garroni, Adriana. - In: ASYMPTOTIC ANALYSIS. - ISSN 0921-7134. - 15:3-4(1997), pp. 299-324.

The capacity method for asymptotic Dirichlet problems

GARRONI, Adriana
1997

Abstract

We prove that the asymptotic behaviour of the solutions of Dirichlet problems for second-order, linear, not necessarily symmetric elliptic equations in perforated domains of the form Omega(h) = OmegaE-h is uniquely determined by the asymptotic behaviour, as h --> infinity, of suitable capacities of the sets B boolean AND E-h, where B runs in a conveniently large class of subsets of Omega.
1997
01 Pubblicazione su rivista::01a Articolo in rivista
The capacity method for asymptotic Dirichlet problems / G., Dal Maso; Garroni, Adriana. - In: ASYMPTOTIC ANALYSIS. - ISSN 0921-7134. - 15:3-4(1997), pp. 299-324.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/44213
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact