We consider a model for dislocations in crystals introduced by Koslowski, Cuitino and Ortiz, which includes elastic interactions via a singular kernel behaving as the H(1/2) norm of the slip. We obtain a sharp-interface limit of the model within the framework of Gamma-convergence. From an analytical point of view, our functional is a vector-valued generalization of the one studied by Alberti, Bouchitte and Seppecher to which their rearrangement argument no longer applies. Instead, we show that the microstructure must be approximately one-dimensional on most length scales and we exploit this property to derive a sharp lower bound.
Singular Kernels, Multiscale Decomposition of Microstructure, and Dislocation Models / Sergio, Conti; Garroni, Adriana; Stefan, Muller. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 199:3(2011), pp. 779-819. [10.1007/s00205-010-0333-7]
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Singular Kernels, Multiscale Decomposition of Microstructure, and Dislocation Models | |
Autori: | ||
Data di pubblicazione: | 2011 | |
Rivista: | ||
Citazione: | Singular Kernels, Multiscale Decomposition of Microstructure, and Dislocation Models / Sergio, Conti; Garroni, Adriana; Stefan, Muller. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - STAMPA. - 199:3(2011), pp. 779-819. [10.1007/s00205-010-0333-7] | |
Handle: | http://hdl.handle.net/11573/44200 | |
Appartiene alla tipologia: | 01a Articolo in rivista |