We study the asymptotic behavior as epsilon --> 0 of highly oscillating periodic nonlinear functionals of the form F-epsilon(u) = integral(Omega)f(x/epsilon, Du(x)) dx, defined on a Sobolev space W-1,W-p(Omega;R(m)). We characterise their variational limit under the hypotheses that there exists a c such that the region where f(x,xi) less than or equal to c(1 + xi(p)) does not hold for all matrices xi is composed of well-separated sets, and the condition f(x,xi) greater than or equal to xi(p) for all matrices xi is verified on a connected open set with Lipschitz boundary.

HOMOGENIZATION OF PERIODIC NONLINEAR MEDIA WITH STIFF AND SOFT INCLUSIONS / Andrea, Braides; Garroni, Adriana. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 5:04(1995), pp. 543-564. [10.1142/s0218202595000322]

HOMOGENIZATION OF PERIODIC NONLINEAR MEDIA WITH STIFF AND SOFT INCLUSIONS

GARRONI, Adriana
1995

Abstract

We study the asymptotic behavior as epsilon --> 0 of highly oscillating periodic nonlinear functionals of the form F-epsilon(u) = integral(Omega)f(x/epsilon, Du(x)) dx, defined on a Sobolev space W-1,W-p(Omega;R(m)). We characterise their variational limit under the hypotheses that there exists a c such that the region where f(x,xi) less than or equal to c(1 + xi(p)) does not hold for all matrices xi is composed of well-separated sets, and the condition f(x,xi) greater than or equal to xi(p) for all matrices xi is verified on a connected open set with Lipschitz boundary.
1995
01 Pubblicazione su rivista::01a Articolo in rivista
HOMOGENIZATION OF PERIODIC NONLINEAR MEDIA WITH STIFF AND SOFT INCLUSIONS / Andrea, Braides; Garroni, Adriana. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 5:04(1995), pp. 543-564. [10.1142/s0218202595000322]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/44198
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 20
social impact