Let g=g0⊕g1 be a ℤ2-graded Lie algebra. We study the posets of abelian subalgebras of g1 which are stable w. r. t. a Borel subalgebra of g0. In particular, we find a natural parametrization of maximal elements and dimension formulas for them. We recover as special cases several results of Kostant, Panyushev, and Suter. © 2012 Springer Basel AG.
On the structure of Borel stable abelian subalgebras in infinitesimal symmetric spaces / P., Cellini; P., Moseneder Frajria; Papi, Paolo; M., Pasquali. - In: SELECTA MATHEMATICA. - ISSN 1022-1824. - STAMPA. - 19:2(2013), pp. 399-437. [10.1007/s00029-012-0097-z]
On the structure of Borel stable abelian subalgebras in infinitesimal symmetric spaces
PAPI, Paolo;
2013
Abstract
Let g=g0⊕g1 be a ℤ2-graded Lie algebra. We study the posets of abelian subalgebras of g1 which are stable w. r. t. a Borel subalgebra of g0. In particular, we find a natural parametrization of maximal elements and dimension formulas for them. We recover as special cases several results of Kostant, Panyushev, and Suter. © 2012 Springer Basel AG.File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


