We consider a sequence of linear Dirichlet problems as follows {-div(sigma(epsilon)del mu(epsilon)) = f in Omega, mu(epsilon) is an element of H-0(1)(Omega), with (sigma(epsilon)) uniformly elliptic and possibly non-symmetric. Using purely variational arguments we give an alternative proof of the compactness of H-convergence, originally proved by Murat and Tartar. (C) 2012 Elsevier Masson SAS. All rights reserved.
Gamma-convergence and H-convergence of linear elliptic operators / Ansini, Nadia; Gianni Dal, Maso; Caterina Ida, Zeppieri. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - ELETTRONICO. - 99:(2013), pp. 321-329. [10.1016/j.matpur.2012.09.004]
Gamma-convergence and H-convergence of linear elliptic operators
ANSINI, NADIA;
2013
Abstract
We consider a sequence of linear Dirichlet problems as follows {-div(sigma(epsilon)del mu(epsilon)) = f in Omega, mu(epsilon) is an element of H-0(1)(Omega), with (sigma(epsilon)) uniformly elliptic and possibly non-symmetric. Using purely variational arguments we give an alternative proof of the compactness of H-convergence, originally proved by Murat and Tartar. (C) 2012 Elsevier Masson SAS. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.