We show a large time behavior result for class of weakly coupled systems of first-order Hamilton-Jacobi equations in the periodic setting. We use a PDE approach to extend the convergence result proved by Namah and Roquejoffre (Commun. Partial. Differ. Equ. 24(5-6):883-893, 1999) in the scalar case. Our proof is based on new comparison, existence and regularity results for systems. An interpretation of the solution of the system in terms of an optimal control problem with switching is given. © 2011 Springer Basel AG.

Large time behavior of weakly coupled systems of first-order Hamilton-Jacobi equations / Camilli, Fabio; Olivier, Ley; Loreti, Paola; Vinh Duc, Nguyen. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 19:6(2012), pp. 719-749. [10.1007/s00030-011-0149-7]

Large time behavior of weakly coupled systems of first-order Hamilton-Jacobi equations

CAMILLI, FABIO;LORETI, Paola;
2012

Abstract

We show a large time behavior result for class of weakly coupled systems of first-order Hamilton-Jacobi equations in the periodic setting. We use a PDE approach to extend the convergence result proved by Namah and Roquejoffre (Commun. Partial. Differ. Equ. 24(5-6):883-893, 1999) in the scalar case. Our proof is based on new comparison, existence and regularity results for systems. An interpretation of the solution of the system in terms of an optimal control problem with switching is given. © 2011 Springer Basel AG.
2012
large-time behavior; systems of hamilton-jacobi equations; critical value; hamilton-jacobi equations; viscosity solution; large time behavior; weakly coupled system
01 Pubblicazione su rivista::01a Articolo in rivista
Large time behavior of weakly coupled systems of first-order Hamilton-Jacobi equations / Camilli, Fabio; Olivier, Ley; Loreti, Paola; Vinh Duc, Nguyen. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 19:6(2012), pp. 719-749. [10.1007/s00030-011-0149-7]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/440211
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact