The fundamental step in the identification of the most appropriate strategy for the remediation of sites contaminated with dense nonaqueous phase liquids (DNAPLs) is a comprehensive characterization of the contaminated source region as the morphology of DNAPL strongly governs the mass transfer processes. The influence of DNAPL distribution geometry and groundwater flow velocity on mass reduction was explored through the evaluation of a series of laboratory studies conducted in a two-dimensional tank under different hydrodynamic conditions. An image analysis procedure was used to determine the distribution of DNAPL saturation and the morphology of the contaminated region. Experimental observations revealed a dependence of mass transfer rate on the aqueous phase velocity under high flow regimes, whereas the mass transfer rate was controlled mainly by morphometric indexes under low velocity flow conditions. Experimental results indicate that higher mass reduction and contaminant fluxes are obtained at low saturation values. The mass flux emanating from an elongated source aligned perpendicularly to the direction of water flow is greater due to a higher DNAPL-water contact surface in comparison to a lower mass flux from horizontal pools with high saturation. These aspects should be considered in an inverse modeling technique for locating the source zone and also in all remediation approaches based on an increase in water circulation through a contaminated zone (i.e., pump and treat).

On morphometric properties of DNAPL sources: relating architecture to mass reduction / Luciano, Antonella; Viotti, Paolo; PETRANGELI PAPINI, Marco. - In: WATER AIR AND SOIL POLLUTION. - ISSN 0049-6979. - STAMPA. - 223:5(2012), pp. 2849-2864. [10.1007/s11270-011-1071-7]

On morphometric properties of DNAPL sources: relating architecture to mass reduction

LUCIANO, Antonella;VIOTTI, Paolo;PETRANGELI PAPINI, Marco
2012

Abstract

The fundamental step in the identification of the most appropriate strategy for the remediation of sites contaminated with dense nonaqueous phase liquids (DNAPLs) is a comprehensive characterization of the contaminated source region as the morphology of DNAPL strongly governs the mass transfer processes. The influence of DNAPL distribution geometry and groundwater flow velocity on mass reduction was explored through the evaluation of a series of laboratory studies conducted in a two-dimensional tank under different hydrodynamic conditions. An image analysis procedure was used to determine the distribution of DNAPL saturation and the morphology of the contaminated region. Experimental observations revealed a dependence of mass transfer rate on the aqueous phase velocity under high flow regimes, whereas the mass transfer rate was controlled mainly by morphometric indexes under low velocity flow conditions. Experimental results indicate that higher mass reduction and contaminant fluxes are obtained at low saturation values. The mass flux emanating from an elongated source aligned perpendicularly to the direction of water flow is greater due to a higher DNAPL-water contact surface in comparison to a lower mass flux from horizontal pools with high saturation. These aspects should be considered in an inverse modeling technique for locating the source zone and also in all remediation approaches based on an increase in water circulation through a contaminated zone (i.e., pump and treat).
2012
contaminant flux; dnapl; image analysis; mass transfer; morphometric indexes; source architecture
01 Pubblicazione su rivista::01a Articolo in rivista
On morphometric properties of DNAPL sources: relating architecture to mass reduction / Luciano, Antonella; Viotti, Paolo; PETRANGELI PAPINI, Marco. - In: WATER AIR AND SOIL POLLUTION. - ISSN 0049-6979. - STAMPA. - 223:5(2012), pp. 2849-2864. [10.1007/s11270-011-1071-7]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/438214
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact