The cytochrome bc(1) complex is a key component in several respiratory pathways. One of the characteristics of the eukaryotic complex is the presence of a small acidic subunit, which is thought to guide the interaction of the complex with its electron acceptor and facilitate electron transfer. Paracoccus denitrificans represents the only example of a prokaryotic organism in which a highly acidic domain is covalently fused to the cytochrome c(1) subunit. In this work, a deletion variant lacking this acidic domain has been produced and purified by affinity chromatography. The complex is fully intact as shown by its X-ray structure, and is a dimer (Kleinschroth et al., subm.) compared to the tetrameric (dimer-of-dimer) state of the wild-type. The variant complex is studied by steady-state kinetics and flash photolysis, showing wild type turnover and a virtually identical interaction with its substrate cytochrome c(552). 2011 Elsevier B.V. All rights reserved.
The acidic domain of cytochrome c₁ in paracoccus denitrificans, analogous to the acidic subunits in eukaryotic bc₁ complexes, is not involved in the electron transfer reaction to its native substrate cytochrome c(552) / M., Castellani; J., Havens; T., Kleinschroth; F., Millett; B., Durham; Malatesta, Francesco; B., Ludwig. - In: BIOCHIMICA ET BIOPHYSICA ACTA. - ISSN 0006-3002. - STAMPA. - 1807:11(2011), pp. 1383-1389. [10.1016/j.bbabio.2011.08.001]
The acidic domain of cytochrome c₁ in paracoccus denitrificans, analogous to the acidic subunits in eukaryotic bc₁ complexes, is not involved in the electron transfer reaction to its native substrate cytochrome c(552).
MALATESTA, FRANCESCO;
2011
Abstract
The cytochrome bc(1) complex is a key component in several respiratory pathways. One of the characteristics of the eukaryotic complex is the presence of a small acidic subunit, which is thought to guide the interaction of the complex with its electron acceptor and facilitate electron transfer. Paracoccus denitrificans represents the only example of a prokaryotic organism in which a highly acidic domain is covalently fused to the cytochrome c(1) subunit. In this work, a deletion variant lacking this acidic domain has been produced and purified by affinity chromatography. The complex is fully intact as shown by its X-ray structure, and is a dimer (Kleinschroth et al., subm.) compared to the tetrameric (dimer-of-dimer) state of the wild-type. The variant complex is studied by steady-state kinetics and flash photolysis, showing wild type turnover and a virtually identical interaction with its substrate cytochrome c(552). 2011 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


