The paper deals with the asymptotic behaviour of the solutions of quasilinear elliptic Dirichlet problems when the (linear) principal parts H-converge and the lower order terms exhibit a natural growth in the gradient variable and a singular behaviour in the u variable. The lower order term in the limit problem presents the same singularity in the u variable and the same growth in the gradient variable. The quadratic nonlinearity in the gradient is constructed through the correctors associated to the principal parts, on which natural integrability hypotheses are assumed. © 2011 Academic Publications, Ltd.

Homogenization of some singular nonlinear elliptic problems / P., Donato; Giachetti, Daniela. - In: INTERNATIONAL JOURNAL OF PURE AND APPLIED MATHEMATICS. - ISSN 1311-8080. - STAMPA. - 73:3(2011), pp. 349-378.

Homogenization of some singular nonlinear elliptic problems

GIACHETTI, Daniela
2011

Abstract

The paper deals with the asymptotic behaviour of the solutions of quasilinear elliptic Dirichlet problems when the (linear) principal parts H-converge and the lower order terms exhibit a natural growth in the gradient variable and a singular behaviour in the u variable. The lower order term in the limit problem presents the same singularity in the u variable and the same growth in the gradient variable. The quadratic nonlinearity in the gradient is constructed through the correctors associated to the principal parts, on which natural integrability hypotheses are assumed. © 2011 Academic Publications, Ltd.
2011
asymptotic behaviour; quadratic nonlinearity in the gradient; singularity in the u variable; quasilinear elliptic dirichlet problems; integrability
01 Pubblicazione su rivista::01a Articolo in rivista
Homogenization of some singular nonlinear elliptic problems / P., Donato; Giachetti, Daniela. - In: INTERNATIONAL JOURNAL OF PURE AND APPLIED MATHEMATICS. - ISSN 1311-8080. - STAMPA. - 73:3(2011), pp. 349-378.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/436838
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact