The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the cosmic microwave background and Galactic foregrounds in six similar to 30% bands centered at 100, 143, 217, 353, 545, and 857 GHz at an angular resolution of 10' (100 GHz), 7' (143 GHz), and 5' (217 GHz and higher). HFI has been operating flawlessly since launch on 14 May 2009, with the bolometers reaching 100 mK the first week of July. The settings of the readout electronics, including bolometer bias currents, that optimize HFI's noise performance on orbit are nearly the same as the ones chosen during ground testing. Observations of Mars, Jupiter, and Saturn have confirmed that the optical beams and the time responses of the detection chains are in good agreement with the predictions of physical optics modeling and pre-launch measurements. The Detectors suffer from a high flux of cosmic rays due to historically low levels of solar activity. As a result of the redundancy of Planck's observation strategy, the removal of a few percent of data contaminated by glitches does not significantly affect the instrumental sensitivity. The cosmic ray flux represents a significant and variable heat load on the sub-Kelvin stage. Temporal variation and the inhomogeneous distribution of the flux results in thermal fluctuations that are a probable source of low frequency noise. The removal of systematic effects in the time ordered data provides a signal with an average noise equivalent power that is 70% of the goal in the 0.6-2.5 Hz range. This is slightly higher than was achieved during the pre-launch characterization but better than predicted in the early phases of the project. The improvement over the goal is a result of the low level of instrumental background loading achieved by the optical and thermal design of the HFI.

Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance / Planck Hfi Core, Team; P. A. R., Ade; N., Aghanim; R., Ansari; M., Arnaud; M., Ashdown; J., Aumont; A. J., Banday; M., Bartelmann; J. G., Bartlett; E., Battaner; K., Benabed; A., Benoit; J. P., Bernard; M., Bersanelli; R., Bhatia; J. J., Bock; J. R., Bond; J., Borrill; F. R., Bouchet; F., Boulanger; T., Bradshaw; E., Breelle; M., Bucher; P., Camus; J. F., Cardoso; A., Catalano; A., Challinor; A., Chamballu; J., Charra; M., Charra; R. R., Chary; C., Chiang; S., Church; D. L., Clements; S., Colombi; F., Couchot; A., Coulais; C., Cressiot; B. P., Crill; M., Crook; DE BERNARDIS, Paolo; J., Delabrouille; J. M., Delouis; F. X., Desert; K., Dolag; H., Dole; O., Dore; M., Douspis; G., Efstathiou; P., Eng; C., Filliard; O., Forni; P., Fosalba; J. J., Fourmond; K., Ganga; M., Giard; D., Girard; Y., Giraud Heraud; R., Gispert; K. M., Gorski; S., Gratton; M., Griffin; G., Guyot; J., Haissinski; D., Harrison; G., Helou; S., Henrot Versille; C., Hernandez Monteagudo; S. R., Hildebrandt; R., Hills; E., Hivon; M., Hobson; W. A., Holmes; K. M., Huffenberger; A. H., Jaffe; W. C., Jones; J., Kaplan; R., Kneissl; L., Knox; G., Lagache; J. M., Lamarre; P., Lami; A. E., Lange; A., Lasenby; A., Lavabre; C. R., Lawrence; B., Leriche; C., Leroy; Y., Longval; J. F., Macias Perez; T., Maciaszek; C. J., Mactavish; B., Maffei; N., Mandolesi; R., Mann; B., Mansoux; Masi, Silvia; T., Matsumura; P., Mcgehee; J. B., Melin; C., Mercier; M. A., Miville Deschenes; A., Moneti; L., Montier; D., Mortlock; A., Murphy; Nati, Federico; C. B., Netterfield; H. U., Norgaard Nielsen; H. U., Nørgaard Nielsen; C., North; F., Noviello; D., Novikov; S., Osborne; C., Paine; F., Pajot; G., Patanchon; T., Peacocke; T. J., Pearson; O., Perdereau; L., Perotto; Piacentini, Francesco; M., Piat; S., Plaszczynski; E., Pointecouteau; R., Pons; N., Ponthieu; G., Prezeau; S., Prunet; J. L., Puget; W. T., Reach; C., Renault; I., Ristorcelli; G., Rocha; C., Rosset; G., Roudier; M., Rowan Robinson; B., Rusholme; D., Santos; Savini, Giorgio; B. M., Schaefer; P., Shellard; L., Spencer; J. L., Starck; P., Stassi; V., Stolyarov; R., Stompor; R., Sudiwala; R., Sunyaev; J. F., Sygnet; J. A., Tauber; C., Thum; J. P., Torre; F., Touze; M., Tristram; F., Van Leeuwen; L., Vibert; D., Vibert; L. A., Wade; B. D., Wandelt; S. D. M., White; H., Wiesemeyer; A., Woodcraft; V., Yurchenko; D., Yvon; A., Zacchei. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - STAMPA. - 536:(2011), p. A4. [10.1051/0004-6361/201116487]

Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance

DE BERNARDIS, Paolo;MASI, Silvia;NATI, FEDERICO;PIACENTINI, Francesco;SAVINI, Giorgio;
2011

Abstract

The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the cosmic microwave background and Galactic foregrounds in six similar to 30% bands centered at 100, 143, 217, 353, 545, and 857 GHz at an angular resolution of 10' (100 GHz), 7' (143 GHz), and 5' (217 GHz and higher). HFI has been operating flawlessly since launch on 14 May 2009, with the bolometers reaching 100 mK the first week of July. The settings of the readout electronics, including bolometer bias currents, that optimize HFI's noise performance on orbit are nearly the same as the ones chosen during ground testing. Observations of Mars, Jupiter, and Saturn have confirmed that the optical beams and the time responses of the detection chains are in good agreement with the predictions of physical optics modeling and pre-launch measurements. The Detectors suffer from a high flux of cosmic rays due to historically low levels of solar activity. As a result of the redundancy of Planck's observation strategy, the removal of a few percent of data contaminated by glitches does not significantly affect the instrumental sensitivity. The cosmic ray flux represents a significant and variable heat load on the sub-Kelvin stage. Temporal variation and the inhomogeneous distribution of the flux results in thermal fluctuations that are a probable source of low frequency noise. The removal of systematic effects in the time ordered data provides a signal with an average noise equivalent power that is 70% of the goal in the 0.6-2.5 Hz range. This is slightly higher than was achieved during the pre-launch characterization but better than predicted in the early phases of the project. The improvement over the goal is a result of the low level of instrumental background loading achieved by the optical and thermal design of the HFI.
2011
methods; detectors; data analysis; cosmology: observations; cosmic background radiation; methods: data analysis; instrumentation: photometers; cosmology; photometers; instrumentation; instrumentation: detectors; observations
01 Pubblicazione su rivista::01a Articolo in rivista
Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance / Planck Hfi Core, Team; P. A. R., Ade; N., Aghanim; R., Ansari; M., Arnaud; M., Ashdown; J., Aumont; A. J., Banday; M., Bartelmann; J. G., Bartlett; E., Battaner; K., Benabed; A., Benoit; J. P., Bernard; M., Bersanelli; R., Bhatia; J. J., Bock; J. R., Bond; J., Borrill; F. R., Bouchet; F., Boulanger; T., Bradshaw; E., Breelle; M., Bucher; P., Camus; J. F., Cardoso; A., Catalano; A., Challinor; A., Chamballu; J., Charra; M., Charra; R. R., Chary; C., Chiang; S., Church; D. L., Clements; S., Colombi; F., Couchot; A., Coulais; C., Cressiot; B. P., Crill; M., Crook; DE BERNARDIS, Paolo; J., Delabrouille; J. M., Delouis; F. X., Desert; K., Dolag; H., Dole; O., Dore; M., Douspis; G., Efstathiou; P., Eng; C., Filliard; O., Forni; P., Fosalba; J. J., Fourmond; K., Ganga; M., Giard; D., Girard; Y., Giraud Heraud; R., Gispert; K. M., Gorski; S., Gratton; M., Griffin; G., Guyot; J., Haissinski; D., Harrison; G., Helou; S., Henrot Versille; C., Hernandez Monteagudo; S. R., Hildebrandt; R., Hills; E., Hivon; M., Hobson; W. A., Holmes; K. M., Huffenberger; A. H., Jaffe; W. C., Jones; J., Kaplan; R., Kneissl; L., Knox; G., Lagache; J. M., Lamarre; P., Lami; A. E., Lange; A., Lasenby; A., Lavabre; C. R., Lawrence; B., Leriche; C., Leroy; Y., Longval; J. F., Macias Perez; T., Maciaszek; C. J., Mactavish; B., Maffei; N., Mandolesi; R., Mann; B., Mansoux; Masi, Silvia; T., Matsumura; P., Mcgehee; J. B., Melin; C., Mercier; M. A., Miville Deschenes; A., Moneti; L., Montier; D., Mortlock; A., Murphy; Nati, Federico; C. B., Netterfield; H. U., Norgaard Nielsen; H. U., Nørgaard Nielsen; C., North; F., Noviello; D., Novikov; S., Osborne; C., Paine; F., Pajot; G., Patanchon; T., Peacocke; T. J., Pearson; O., Perdereau; L., Perotto; Piacentini, Francesco; M., Piat; S., Plaszczynski; E., Pointecouteau; R., Pons; N., Ponthieu; G., Prezeau; S., Prunet; J. L., Puget; W. T., Reach; C., Renault; I., Ristorcelli; G., Rocha; C., Rosset; G., Roudier; M., Rowan Robinson; B., Rusholme; D., Santos; Savini, Giorgio; B. M., Schaefer; P., Shellard; L., Spencer; J. L., Starck; P., Stassi; V., Stolyarov; R., Stompor; R., Sudiwala; R., Sunyaev; J. F., Sygnet; J. A., Tauber; C., Thum; J. P., Torre; F., Touze; M., Tristram; F., Van Leeuwen; L., Vibert; D., Vibert; L. A., Wade; B. D., Wandelt; S. D. M., White; H., Wiesemeyer; A., Woodcraft; V., Yurchenko; D., Yvon; A., Zacchei. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - STAMPA. - 536:(2011), p. A4. [10.1051/0004-6361/201116487]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/436070
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 142
social impact