Myopathies of skeletal muscle are prevalent diseases worldwide. To address this, regenerative therapies are being developed to restore perfusion to ischemic muscle and to reverse muscle wasting. There are adult stem cell populations that inherently possess these therapeutic properties; however, cell transplantation trials in the clinic have shown modest results at best, being limited by poor cell persistence and viability post-transplantation, and by cell relocation to non-target sites. Many materials exist that can elicit and enhance beneficial cell responses these materials can be applied directly, or used as stem cell delivery vehicles, for regenerative therapies. In particular, components of the body's extracellular matrices may be advantageous for therapeutic application because cells already have a pre-disposition for recognizing them, and also because their usage carries a low probability of inducing negative immune responses. This review will survey the major components of the extracellular matrix and their interactions with relevant stem cell populations for the regeneration of muscle. Future material-based therapies will benefit from a more precise control over therapeutic cell populations implicated in the regenerative response. (C) 2011 Elsevier Ltd. All rights reserved.

Exploiting extracellular matrix-stem cell interactions: A review of natural materials for therapeutic muscle regeneration / Drew, Kuraitis; Celine, Giordano; Marc, Ruel; Musaro', Antonio; Erik J., Suuronen. - In: BIOMATERIALS. - ISSN 0142-9612. - STAMPA. - 33:2(2012), pp. 428-443. [10.1016/j.biomaterials.2011.09.078]

Exploiting extracellular matrix-stem cell interactions: A review of natural materials for therapeutic muscle regeneration

MUSARO', Antonio;
2012

Abstract

Myopathies of skeletal muscle are prevalent diseases worldwide. To address this, regenerative therapies are being developed to restore perfusion to ischemic muscle and to reverse muscle wasting. There are adult stem cell populations that inherently possess these therapeutic properties; however, cell transplantation trials in the clinic have shown modest results at best, being limited by poor cell persistence and viability post-transplantation, and by cell relocation to non-target sites. Many materials exist that can elicit and enhance beneficial cell responses these materials can be applied directly, or used as stem cell delivery vehicles, for regenerative therapies. In particular, components of the body's extracellular matrices may be advantageous for therapeutic application because cells already have a pre-disposition for recognizing them, and also because their usage carries a low probability of inducing negative immune responses. This review will survey the major components of the extracellular matrix and their interactions with relevant stem cell populations for the regeneration of muscle. Future material-based therapies will benefit from a more precise control over therapeutic cell populations implicated in the regenerative response. (C) 2011 Elsevier Ltd. All rights reserved.
2012
angiogenesis; extracellular matrix; muscle; myopathies; regenerative medicine; stem cell
01 Pubblicazione su rivista::01a Articolo in rivista
Exploiting extracellular matrix-stem cell interactions: A review of natural materials for therapeutic muscle regeneration / Drew, Kuraitis; Celine, Giordano; Marc, Ruel; Musaro', Antonio; Erik J., Suuronen. - In: BIOMATERIALS. - ISSN 0142-9612. - STAMPA. - 33:2(2012), pp. 428-443. [10.1016/j.biomaterials.2011.09.078]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/434194
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 70
social impact