Background: Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results: The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions: Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.

Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface / Siglioccolo, Alessandro; Paiardini, Alessandro; Maria, Piscitelli; Pascarella, Stefano. - In: BMC STRUCTURAL BIOLOGY. - ISSN 1472-6807. - ELETTRONICO. - 11:1(2011), p. 50. [10.1186/1472-6807-11-50]

Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface

SIGLIOCCOLO, ALESSANDRO;PAIARDINI, ALESSANDRO;PASCARELLA, Stefano
2011

Abstract

Background: Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results: The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions: Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.
2011
apolar contact area; conserved hydrophobic contacts; enzyme adaptation; halophilic organisms; hydrophobic contact surface; osmolyte
01 Pubblicazione su rivista::01a Articolo in rivista
Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface / Siglioccolo, Alessandro; Paiardini, Alessandro; Maria, Piscitelli; Pascarella, Stefano. - In: BMC STRUCTURAL BIOLOGY. - ISSN 1472-6807. - ELETTRONICO. - 11:1(2011), p. 50. [10.1186/1472-6807-11-50]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/433699
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 48
  • Scopus 117
  • ???jsp.display-item.citation.isi??? 108
social impact