The interaction of seismic waves with slopes is a major factor influencing landslide movements that involve slope stability, local site seismic amplification and topographic effects affecting ground motion. The results of a numerical study of landslide movements induced by the interaction of seismic waves with step-like slopes are presented here. To investigate this input-slope interaction, a dynamic analysis was performed using the finite difference stress-strain numerical code RAC 6.0 under visco-plastic conditions. The dynamic signals were selected to be representative of different peak ground accelerations (PGAs), Arias intensities and frequency contents, and they were used in a parametric study of different step-like slopes with different geometrical configurations in terms of dip, height and thickness of geological strata. The derived outputs were processed for a seismic amplification analysis and to evaluate the induced stress-strain effects in terms of progressive failure and resulting displacements. The obtained results: i) describe a fundamental role of topography in amplifying or de-amplifying the seismic ground motion; ii) demonstrate that the progressive failure of unsheared slopes influences the seismic amplification; iii) show that the strain effects on unsheared slopes, in terms of progressive failure, are more intense with increasing Arias intensity and slope dip; iv) prove that amplification or de-amplification processes can justify the values of displacements involving pre-existing landslide masses, which are significantly different with respect to those expected on the basis of sliding block approaches (i.e., Newmark's and flexible sliding block methods); v) highlight that, in the geological setting considered here, the seismically induced displacements arising from the reactivation of pre-existing landslide masses can be significantly underestimated by sliding block approaches in the case of low-angle slopes characterised by high K values, i.e. the ratio; between the critical pseudostatic threshold (kg) of the landslide and PGAs of the applied seismic input. (C) 2011 Elsevier B.V. All rights reserved.

The interaction of seismic waves with step-like slopes and its influence on landslide movements / L., Lenti; Martino, Salvatore. - In: ENGINEERING GEOLOGY. - ISSN 0013-7952. - 126:(2012), pp. 19-36. [10.1016/j.enggeo.2011.12.002]

The interaction of seismic waves with step-like slopes and its influence on landslide movements

MARTINO, Salvatore
2012

Abstract

The interaction of seismic waves with slopes is a major factor influencing landslide movements that involve slope stability, local site seismic amplification and topographic effects affecting ground motion. The results of a numerical study of landslide movements induced by the interaction of seismic waves with step-like slopes are presented here. To investigate this input-slope interaction, a dynamic analysis was performed using the finite difference stress-strain numerical code RAC 6.0 under visco-plastic conditions. The dynamic signals were selected to be representative of different peak ground accelerations (PGAs), Arias intensities and frequency contents, and they were used in a parametric study of different step-like slopes with different geometrical configurations in terms of dip, height and thickness of geological strata. The derived outputs were processed for a seismic amplification analysis and to evaluate the induced stress-strain effects in terms of progressive failure and resulting displacements. The obtained results: i) describe a fundamental role of topography in amplifying or de-amplifying the seismic ground motion; ii) demonstrate that the progressive failure of unsheared slopes influences the seismic amplification; iii) show that the strain effects on unsheared slopes, in terms of progressive failure, are more intense with increasing Arias intensity and slope dip; iv) prove that amplification or de-amplification processes can justify the values of displacements involving pre-existing landslide masses, which are significantly different with respect to those expected on the basis of sliding block approaches (i.e., Newmark's and flexible sliding block methods); v) highlight that, in the geological setting considered here, the seismically induced displacements arising from the reactivation of pre-existing landslide masses can be significantly underestimated by sliding block approaches in the case of low-angle slopes characterised by high K values, i.e. the ratio; between the critical pseudostatic threshold (kg) of the landslide and PGAs of the applied seismic input. (C) 2011 Elsevier B.V. All rights reserved.
2012
dynamic numerical modelling; seismically induced landslides; slope stability; seismic amplification
01 Pubblicazione su rivista::01a Articolo in rivista
The interaction of seismic waves with step-like slopes and its influence on landslide movements / L., Lenti; Martino, Salvatore. - In: ENGINEERING GEOLOGY. - ISSN 0013-7952. - 126:(2012), pp. 19-36. [10.1016/j.enggeo.2011.12.002]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/432885
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 65
social impact