We provide formulas for the denominator and superdenominator of a basic classical type Lie superalgebra for any set of positive roots. We establish a connection between certain sets of positive roots and the theory of reductive dual pairs of real Lie groups, and, as an application of these formulas, we recover the Theta correspondence for compact dual pairs. Along the way we give an explicit description of the real forms of basic classical type Lie superalgebras.
Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs / Maria, Gorelik; Victor G., Kac; Pierluigi Moseneder, Frajria; Papi, Paolo. - In: JAPANESE JOURNAL OF MATHEMATICS. NEW SERIES. - ISSN 0289-2316. - STAMPA. - 7:1(2012), pp. 41-134. [10.1007/s11537-012-1104-z]
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs | |
Autori: | ||
Data di pubblicazione: | 2012 | |
Rivista: | ||
Citazione: | Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs / Maria, Gorelik; Victor G., Kac; Pierluigi Moseneder, Frajria; Papi, Paolo. - In: JAPANESE JOURNAL OF MATHEMATICS. NEW SERIES. - ISSN 0289-2316. - STAMPA. - 7:1(2012), pp. 41-134. [10.1007/s11537-012-1104-z] | |
Handle: | http://hdl.handle.net/11573/432595 | |
Appartiene alla tipologia: | 01a Articolo in rivista |