We consider the Dirichlet problem for the Laplace equation in a bounded cylindrical domain C:=D , where D is a starlike domain of the (x,y)-plane. We show how to construct the solution by using the Fourier series method. We derive some numerical results defining by means of the so called “superformula” introduced by J.Gielis. By using a computer algebra system we find a quite rapid convergence of the approximate solutions to the real one, with only possible exceptions corresponding to singular points in which oscillations recalling Gibbs’ phenomenon appear. Our findings are in agreement with the theoretical results on Fourier series due to L.Carleson.

Solution of the Dirichlet problem for the Laplace equation in general cylinder / Germano, Bruna; D., Caratelli; P. E., Ricci; M. X., He. - In: LECTURE NOTES OF TICMI. - ISSN 1512-0511. - STAMPA. - 10:(2009), pp. 20-34.

Solution of the Dirichlet problem for the Laplace equation in general cylinder.

GERMANO, Bruna;
2009

Abstract

We consider the Dirichlet problem for the Laplace equation in a bounded cylindrical domain C:=D , where D is a starlike domain of the (x,y)-plane. We show how to construct the solution by using the Fourier series method. We derive some numerical results defining by means of the so called “superformula” introduced by J.Gielis. By using a computer algebra system we find a quite rapid convergence of the approximate solutions to the real one, with only possible exceptions corresponding to singular points in which oscillations recalling Gibbs’ phenomenon appear. Our findings are in agreement with the theoretical results on Fourier series due to L.Carleson.
2009
01 Pubblicazione su rivista::01a Articolo in rivista
Solution of the Dirichlet problem for the Laplace equation in general cylinder / Germano, Bruna; D., Caratelli; P. E., Ricci; M. X., He. - In: LECTURE NOTES OF TICMI. - ISSN 1512-0511. - STAMPA. - 10:(2009), pp. 20-34.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/428959
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact