A self-consistent remote sensing physical method to retrieve atmospheric humidity high-resolution profiles by synergetic use of a microwave radiometer profiler (MWRP) and wind profiler radar (WPR) is illustrated. The proposed technique is based on the processing of WPR data for estimating the potential refractivity gradient profiles and their optimal combination with MWRP estimates of potential temperature profiles in order to fully retrieve humidity gradient profiles. The combined algorithm makes use of recent developments in WPR signal processing, computing the zeroth-, first-, and second-order moments of WPR Doppler spectra via a fuzzy logic method, which provides quality control of radar data in the spectral domain. On the other hand, the application of neural network to brightness temperatures, measured by a multichannel MWRP, can provide continuous estimates of tropospheric temperature and humidity profiles. Performance of the combined algorithm in retrieving humidity profiles is compared with simultaneous in situ radiosonde observations (raob’s). The empirical sets of WPR and MWRP data were collected at the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site. Combined microwave radiometer and wind profiler measurements show encouraging results and significantly improve the spatial vertical resolution of atmospheric humidity profiles. Finally, some of the limitations found in the use of this technique and possible future improvements are also discussed.

Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidty profiling / Bianco, L; D., Cimini; R., Ware; Marzano, FRANK SILVIO. - In: JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY. - ISSN 0739-0572. - STAMPA. - 22:(2005), pp. 949-965. [10.1175/JTECH1771.1]

Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidty profiling

MARZANO, FRANK SILVIO
2005

Abstract

A self-consistent remote sensing physical method to retrieve atmospheric humidity high-resolution profiles by synergetic use of a microwave radiometer profiler (MWRP) and wind profiler radar (WPR) is illustrated. The proposed technique is based on the processing of WPR data for estimating the potential refractivity gradient profiles and their optimal combination with MWRP estimates of potential temperature profiles in order to fully retrieve humidity gradient profiles. The combined algorithm makes use of recent developments in WPR signal processing, computing the zeroth-, first-, and second-order moments of WPR Doppler spectra via a fuzzy logic method, which provides quality control of radar data in the spectral domain. On the other hand, the application of neural network to brightness temperatures, measured by a multichannel MWRP, can provide continuous estimates of tropospheric temperature and humidity profiles. Performance of the combined algorithm in retrieving humidity profiles is compared with simultaneous in situ radiosonde observations (raob’s). The empirical sets of WPR and MWRP data were collected at the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains (SGP) site. Combined microwave radiometer and wind profiler measurements show encouraging results and significantly improve the spatial vertical resolution of atmospheric humidity profiles. Finally, some of the limitations found in the use of this technique and possible future improvements are also discussed.
2005
01 Pubblicazione su rivista::01a Articolo in rivista
Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidty profiling / Bianco, L; D., Cimini; R., Ware; Marzano, FRANK SILVIO. - In: JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY. - ISSN 0739-0572. - STAMPA. - 22:(2005), pp. 949-965. [10.1175/JTECH1771.1]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/42298
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
social impact